期刊文献+

基于局部特征聚合的图像检索方法 被引量:16

Image Retrieval Based on Locally Features Aggregating
下载PDF
导出
摘要 多媒体数据尤其是图像数据的急剧增长,使得基于图像内容的检索成为一个非常重要的研究课题.图像的特征描述以及特征的索引机制是实现基于内容图像检索的关键.针对图像局部聚合描述符(Vectors of LocallyAggregated Descriptors,VLAD)中硬分配难以准确描述局部特征向量与聚类之间隶属关系的问题,采用软分配策略,根据局部特征向量与聚类中心的距离分配不同的隶属权值,生成更具代表性的软分配局部聚合描述符(SoftAssignment-VLAD,SA-VLAD).针对非对称距离计算倒排索引机制(Inverted File with Asymmetric Distance Com-putation,IVFADC)在查询时为保证结果的查全率而增加候选倒排索引链的数目,导致距离计算和查询时间增加的问题,提出引入简单的散分配方法,将可能落入多条链表中的数据库向量进行多次编码,实现了基于散分配的非对称距离计算倒排索引机制(Dispersed Assignment-IVFADC,DA-IVFADC).实验结果表明:DA-IVFADC机制与SA-VLAD描述符,在很大程度上减少了查询时间,同时有效提高了查询结果的准确率. With the amount of multimedia data,especially image data,increased rapidly,similar image retrieval has become a very important research subject.Features which describe images and feature indexing are important to image retrieval.Vectors of Locally Aggregated Descriptors(VLAD) cannot describe the relationship between local descriptors and clusters.More representative aggregation vector called Soft Assignment-Vectors of Locally Aggregated Descriptors(SA-VLAD) is put forward by using soft-assignment.Soft-assignment is a distributive strategy that the weight assigned to neighboring cells depends on the distance between the local descriptors and the cell centers.Besides,based on Inverted File with Asymmetric Distance Computation(IVFADC),a new indexing scheme named Dispersed Assignment-Inverted File with Asymmetric Distance Computation(DA-IVFADC) is implemented by using dispersed-assignment in indexing stage to resolve the problem of massive distance computation.Experimental results demonstrate that DA-IVFADC and SA-VLAD lessens the query time to a great extent and effectively improves the accuracy rate of results.
出处 《计算机学报》 EI CSCD 北大核心 2011年第11期2224-2233,共10页 Chinese Journal of Computers
基金 国家自然科学基金(61173114 60903095) 湖北省杰出青年基金(2010CDA084) 中央高校基本科研业务费专项资金(2011QN057 2011TS094)资助
关键词 基于内容的图像检索 高维索引 维度灾难 聚合向量 content-based image retrieval high-dimension indexing curse of dimension aggregated descriptors
  • 相关文献

参考文献16

  • 1Chang S K, Hsu A. Image information system: Where do we go from here? IEEE Transactions on Knowledge and Date Engineering, 1992, 4(5): 431-442. 被引量:1
  • 2Niblack W, Barber R, Equitz W, et al. The QBIC project: Querying images by content, using color, texture and shape//Proceedings of the SPIE Storage and Retrieval for Image and Video Databases. San Jose, USA, 1993:173-187. 被引量:1
  • 3Bach J, Fuller C, Gupta A. Virage image search engine: An open framework for image management//Proceedings of the SPIE Conference on Storage and Retrieval for Image and Vid- eo Databases IV. San Jose, USA, 1996:76-87. 被引量:1
  • 4Panigrahy Rina. Entropy based nearest neighbor search in high dimensions//Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms. Miami, USA, 2006.. 1186-1195. 被引量:1
  • 5Berchtold S, Ertl K B, Kriegel H P. The pyramid-technique: Towards breaking the curse of dimensionality//Proceedings of the 1998 ACM SIGMOD International Conference on Man- agement of data. Washington, USA, 1998:142-153. 被引量:1
  • 6Jegou Herve, Douze Matthifs, Schmid Cordelia. Aggregating local descriptors into a compact image representation//Pro- eeedings of the IEEE 23rd Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 3304- 3311. 被引量:1
  • 7Perronnin F, Dance C R. Fisher kernels on visual vocabula- ries for image categorization//Proceedings of the IEEE 10th Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007:1-8. 被引量:1
  • 8Bentley J L. Multidimensional binary search trees used for associative Searching. Communications of the ACM, 1975, 18(9) : 509-517. 被引量:1
  • 9Raphael Finkel, Bentley J L. Quad trees: A data structure for retrieval of composite keys. Aeta Informatics, 1974, 4(1): 1-9. 被引量:1
  • 10Beckman N, Kriegel H, Schneider R. The R*-tree: An effi- cient and robust access method for points and rectangles// Proceedings of the 1990 ACM SIGMOD International Confer- ence on Management of Data. New Jersey, USA, 1990: 322- 331. 被引量:1

同被引文献155

引证文献16

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部