期刊文献+

基于模糊聚类算法的故障数据分析与类型识别

Fault Data Analysis and Type Recognition Based on Fuzzy Clustering Algorithm
下载PDF
导出
摘要 为精确分析测量系统故障数据和识别故障类型,提出一种基于模糊聚类算法的故障数据分析方法。该方法首先用小波变换有效地检测出系统故障的微弱非线性不规则信号,再用模糊聚类的方法对故障进行分类识别。由于该算法在目标函数中加入隶属度函数,同时定义明可夫斯基的距离测度,因此能够克服K-means算法不适用于进行非凸形状的聚类的缺点,从而使诊断的数据更加精确。 To accurately analyse the fault data of the measurement system and identify the type of the fault, presents a fault diagnosis approach based on fuzzy clustering algorithm. Firstly, uses the wavelet transform to locate the weak and nonlinear signal when there are faults, and then uses the fuzzy clustering algorithm to identify the type of the fault. Because the membership degree and the Minkowski distance is defined in the objective function, the proposed scheme can overcome the disadvantages of clustering the non-convex data, so as to achieve the accurate fault diagnosis.
作者 荀瑞新
机构地区 [
出处 《现代计算机》 2011年第21期13-15,共3页 Modern Computer
关键词 模糊聚类 数据分析 类型识别 Fuzzy Clustering Data Analysis Type Recognition
  • 相关文献

参考文献8

  • 1吴今培,肖健华.智能故障诊断与专家系统[M].北京:科学出版社,1994 被引量:2
  • 2Han,M. Kamber(2001). Data Mining: Concept and Techniques, Morgan Kaufmann, San Francisco, CA, U.S.A. 被引量:1
  • 3Huang ZX. Extensions to the K-means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery, 1998,2:283-304. 被引量:1
  • 4Barbara D. Using Self-Similarity to Cluster Large Data Sets. Data Mining and Knowledge Discovery, 2003,7:123-152. 被引量:1
  • 5何正嘉等著..机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2002:160.
  • 6李弼程,罗建书编著..小波分析及其应用[M].北京:电子工业出版社,2003:238.
  • 7毛嘉莉.基于K-means的文本聚类算法[J].计算机系统应用,2009,18(10):85-87. 被引量:9
  • 8秦前清,杨宗凯编著..实用小波分析[M].西安:西安电子科技大学出版社,1994:173.

二级参考文献8

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部