期刊文献+

核k-凝聚聚类算法 被引量:7

Kernel k-aggregate clustering algorithm
下载PDF
导出
摘要 为解决k-means聚类算法和k-凝聚聚类算法对于非凸形状数据聚类正确率低和模糊核聚类算法(FKCM)收敛速度慢的问题,将k-凝聚聚类算法与核函数方法相结合,在高维特征空间构造了新的核聚类算法——核k-凝聚聚类算法,实现了k-凝聚聚类算法的核化.通过Matlab编程进行数值实验,证明了核k-凝聚聚类算法在聚类的准确性、稳定性、健壮性等方面较之k-means聚类算法、k-凝聚聚类算法和FKCM有一定程度的改进. For solving the problems that the k-means clustering algorithm and k-aggregate clustering algorithm cannot correctly cluster the non-spherical shape data, and that the convergence speed of fuzzy kernel clustering method (FKCM) is lower, a new kernel aggregate clustering algorithm -- kernel k-aggregate clustering algorithm in high dimensional feature space is introduced, which combines k-aggregate clustering algorithm with kernel function method. The data experiment using Matlab shows that the kernel k-aggregate clustering algorithm has obvious improvement in accuracy, stability and robustness of clustering compared with the k-means clustering algorithm, k-aggregate clustering algorithm and FKCM.
作者 王宇 李晓利
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第5期763-766,共4页 Journal of Dalian University of Technology
关键词 聚类 k-凝聚 kernel clustering k-aggregate
  • 相关文献

参考文献12

二级参考文献16

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641. 被引量:1
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552. 被引量:1
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784. 被引量:1
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116. 被引量:1
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017. 被引量:1
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981. 被引量:1
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877. 被引量:1
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369. 被引量:1
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368. 被引量:1
  • 10[1]Vapnik V N. The Nature of Statistical Learning Theory. Springer Verlag New York, 1995 被引量:1

共引文献439

同被引文献80

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部