期刊文献+

基于神经网络的大豆叶片病斑的识别与研究 被引量:23

Investigation and Recognition on Diseased Spots of Soybean Laminae Based on Neural Network
下载PDF
导出
摘要 综合运用计算机数字图像处理技术与人工神经网络技术,建立了一个多层BP神经网络,实现了大豆叶片中病斑的自动识别与特征计算。首先通过计算机视觉技术采集叶片图像。其次,采用BP神经网络完成了对病斑图像的识别。最后,运用数字图像处理技术完成了对病斑区域相关特征值的计算。实验证明,该方法能有效地识别出病斑区域,识别率可达100%。该研究为将来病种的识别提供了理论依据。 A multi-layer BP neural network, using computer digital image processing and artificial neural network was established in this paper, which could identify the area of diseased spots of soybean laminae. Firstly, obtained the image of soybean laminae, and then recognized the diseased spots through neural network. At last, computed the feature parameter of diseased spots using the technology of digital image processing. The experiment showed that the diseased spots could be recognized correctly and the accuracy could reach to 100%.This research might provide theoretical foundation for the recognition of the category of diseases.
出处 《黑龙江八一农垦大学学报》 2006年第2期84-87,共4页 journal of heilongjiang bayi agricultural university
关键词 图像处理 病斑 神经网络 image processing diseased spot neural network
  • 相关文献

参考文献4

  • 1李庆中,张漫,汪懋华.基于遗传神经网络的苹果颜色实时分级方法[J].中国图象图形学报(A辑),2000,5(9):779-784. 被引量:52
  • 2SI Cho,NHKi.Autonomous speed sprayer guidance using machine vision and fuzzy logic[J].Trans of the ASAE,1999,42(4):1137~1143. 被引量:1
  • 3Zadeh L A.Fuzzy logic:Neural Networks and soft computing[J].Communication of the ACM,1994,37(3):77~84. 被引量:1
  • 4黄振华,吴诚一编..模式识别原理[M].杭州:浙江大学出版社,1991:307.

二级参考文献9

共引文献51

同被引文献349

引证文献23

二级引证文献258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部