期刊文献+

A Non-canonical Example to Support P Is Not Equal to NP 被引量:1

A Non-canonical Example to Support P Is Not Equal to NP
下载PDF
导出
摘要 The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. The first is the classifications of different mathematical problems (languages), and the second is the distinction between a non-deterministic Turing machine (NTM) and a deterministic Turing machine (DTM). The process of an NTM can be a power set of the corresponding DTM, which proves that the states of an NTM can be a power set of the corresponding DTM. If combining this viewpoint with Cantor's theorem, it is shown that an NTM is not equipotent to a DTM. This means that "generating the power set P(A) of a set A" is a non-canonical example to support that P is not equal to NP. The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. The first is the classifications of different mathematical problems (languages), and the second is the distinction be- tween a non-deterministic Turing machine (NTM) and a deterministic Turing machine (DTM). The process of an NTM can be a power set of the corresponding DTM, which proves that the states of an NTM can be a power set of the corresponding DTM. If combining this viewpoint with Cantor's theorem, it is shown that an NTM is not equipotent to a DTM. This means that "generating the power set P (A) of a set A" is a non-canonical example to support that P is not equal to NP.
作者 杨正瓴
出处 《Transactions of Tianjin University》 EI CAS 2011年第6期446-449,共4页 天津大学学报(英文版)
关键词 P versus NP computational complexity theory Cantor's theorem power set continuum hypothesis NP问题 不等 DTM NTM 数学问题 非确定性 图灵机 子问题
  • 相关文献

参考文献19

  • 1Cook S. The P versus NP Problem. Official Problem De- scription[EB/OL], http://www, claymath, org/millennium/ P vs NP/pvsnp. pdf, 2000. 被引量:1
  • 2Encyclopaedia of China." Electronics and Computer[M]. Encyclopaedia of China Publishing House, Beijing, 1986 (in Chinese). 被引量:1
  • 3The Clay Mathematics Institute. P vs NP Problem [EB/OL]. http://www, claymath, org/millennium/P vs_NP /, 2000. 被引量:1
  • 4Smale S. Mathematical problems for the next century [J].Mathematical Intelligencer, 1998, 20 (2) : 7-15. 被引量:1
  • 5Seife C. What are the limits of conventional comput- ing? [J]. Science, 2005, 309 (5731): 96. 被引量:1
  • 6Gasarch W I. The P=?NP poll[J]. SIGACT News, 2002, 33 (2) : 34-47. 被引量:1
  • 7Allender E. A status report on the P versus NP question [J]. Advances in Computers, 2009, 77: 117-147. 被引量:1
  • 8Fortnow L. The status of the P versus NP problem [J]. Communications oftheACM, 2009, 52 (9) : 78-86. 被引量:1
  • 9Cook S. The importance of the P versus NP question[J]. Journal of the ACM, 2003, 50 (1): 27-29. 被引量:1
  • 10Gassner C. Oracles and relativizations of the P =? NP ques- tion for several structures [J]. Journal of Universal Com- puter Science, 2009, 15 (6) : 1186-1205. 被引量:1

同被引文献14

  • 1杜丁柱,葛可一,王洁.计算复杂性导引[M].北京:高等教育出版社,2002. 被引量:3
  • 2Arora S, Barak B. Complexity Theory: A Modem Approach [ M ]. Cambridge : Cambridge University Press,2009. 被引量:1
  • 3Aaronson S. Is P versus NP formally independent? [J]. Bulletin of the European Association for Theoretical Computer Science,2003,81:109-136. 被引量:1
  • 4Sahni S. Data Structures, Algorithms and Applications in C++[M]. [s. l. ] :McGraw-Hill,1998. 被引量:1
  • 5Cook S A. The complexity of theorem proving procedures [ C ]//Proceedings of Third Annual ACM Symposium on Theory of Computing. New York : Association for Computing Machinery, 1971 : 151 - 158. 被引量:1
  • 6Karp R M. Reducibility among combinatorial problems[ M ]// Complexity of Computer Computations. New York: Plenum Press, 1972 : 85 - 104. 被引量:1
  • 7Fortnow L. The Status of the P Versus NP Problem [ J ]. Communications of the ACM ,2010 ,52 ( 9 ) :78-86. 被引量:1
  • 8Posa L. Hamiltonian circuits in random graphs [ J ]. Discrete Math. , 1976,14 (4) :359-564. 被引量:1
  • 9杨正瓴.密码学与非确定型图灵机[J].中国电子科学研究院学报,2008,3(6):558-562. 被引量:2
  • 10杨正瓴.第二类计算机构想[J].中国电子科学研究院学报,2011,6(4):368-374. 被引量:1

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部