期刊文献+

Recursive Least Squares Estimator with Multiple Exponential Windows in Vector Autoregression 被引量:1

Recursive Least Squares Estimator with Multiple Exponential Windows in Vector Autoregression
全文增补中
导出
摘要 In the parameter tracking of time-varying systems, the ordinary method is weighted least squares with the rectangular window or the exponential window. In this paper we propose a new kind of sliding window called the multiple exponential window, and then use it to fit time-varying Gaussian vector autoregressive models. The asymptotic bias and covariance of the estimator of the parameter for time-invariant models are also derived. Simulation results show that the multiple exponential windows have better parameter tracking effect than rectangular windows and exponential ones. In the parameter tracking of time-varying systems, the ordinary method is weighted least squares with the rectangular window or the exponential window. In this paper we propose a new kind of sliding window called the multiple exponential window, and then use it to fit time-varying Gaussian vector autoregressive models. The asymptotic bias and covariance of the estimator of the parameter for time-invariant models are also derived. Simulation results show that the multiple exponential windows have better parameter tracking effect than rectangular windows and exponential ones.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第1期85-102,共18页 应用数学学报(英文版)
关键词 Exponential window rectangular window multiple exponential window weighted least squares method vector autoregression Exponential window, rectangular window, multiple exponential window, weighted least squares method, vector autoregression
  • 相关文献

同被引文献14

  • 1苏涛,詹原瑞.证券组合SKST-APARCH模型和VaR估计分析[J].系统工程学报,2005,20(6):639-643. 被引量:11
  • 2Basel Committee on Banking Supervision. International Convergence of Capital Mea.surement and Capital Standards: A Revised Framework Comprehensive Version [EB/OL]. http://www.bis.org/, 2006. 被引量:1
  • 3Duffie D, Pan J. An overview of value at risk [J]. The Journal of Derivatives, 1997, 5:7-49. 被引量:1
  • 4Jorion P. Value at Risk: The New Benchmark for Managing Financial Risk (3rd edition) [M]. New York: McGraw-Hill, 2006. 被引量:1
  • 5Fan J, Gu J. Semiparametric estimation of value at risk [J]. Econometrics Journal, 2003, 6: 261-290. 被引量:1
  • 6McAleer M, Jim:nez-Martin J-A, P:rez-Amaral T. International evidence on GFC-robust forecasts for risk management under the Basel Accord [R]. http://ssrn.com/abstract:1741565, 2011. 被引量:1
  • 7Jim:nez-Martfn J-A, McAleer M, P6rez-Amaral T. The ten commandments for managing value-at- risk under the Basel II Accord [J]. Journal of Economic Surveys, 2009, 23: 850-855. 被引量:1
  • 8Christoffersen P F. Evaluating interval forecasts [J]. International Economic Review, 1998, 39: 841- 62. 被引量:1
  • 9郑文通.金融风险管理的VAR方法及其应用[J].国际金融研究,1997(9):58-62. 被引量:127
  • 10王久胜,包卫军,胡杰.基于多维Gumbel Copula函数的投资组合VaR分析[J].数理统计与管理,2010,29(1):137-143. 被引量:13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部