期刊文献+

利普希茨空间到有界解析函数空间的加权微分复合算子

Weighted Differentiation Composition Operators from Lipschitz Space to Bounded Analytic Function Space
下载PDF
导出
摘要 加权微分复合算子理论是算子领域的重要组成部分.不同空间的加权微分复合算子的有界性和紧致性被深入地研究并出现了许多成果.在此基础上给出了单位圆盘上从利普希茨空间到有界解析函数空间的加权微分复合算子有界和紧致的性质,并证明了算子有界和紧致的充要条件. Abstrac: Theories of weighted differentiation composition operators are important component parts in operator fields.Boundedness and compactness of the weighted differentiation composition operators between different spaces have been widely studied and a number of results have been given.On this basis,the necessary and sufficient conditions of the boundedness and compactness of the weighted differentiation composition operator from the Lipschitz spaces to bounded analytic function spaces in the unit disk are presented and proved.
作者 张亮
机构地区 天津大学理学院
出处 《菏泽学院学报》 2011年第5期25-27,共3页 Journal of Heze University
基金 国家自然科学基金资助项目(10971153) 国家自然科学基金资助项目(10671141)
关键词 利普希茨空间 有界解析函数空间 加权微分复合算子 Lipschitz spaces bounded analytic function spaces weighted differentiation composition operators
  • 相关文献

参考文献7

  • 1Stevi'c S. Norm of weighted composition operators from Bloch space to on the unit ball [J]. Ars Combinatofia, 2008, 88:125 - 127. 被引量:1
  • 2Stevi'e S. On a new operator fromto the Bloch -type space on the unit ball [J]. Utilitas Mathenratica, 2008, 77:257 -263. 被引量:1
  • 3Wulan H , Zhou J. Type spaces of analytic functions [ J ]. Journal of Function Spaces and Applications, 2006, 4 ( 1 ) : 73 - 84. 被引量:1
  • 4Zhou Z H, Shi J H. Compactness of composition operators on the Bloch space in classical bounded symmetric domains [J]. Michigan Math, 2002, 50:381 -405. 被引量:1
  • 5Hu Z, Wang S. Composition operators on Bloch- type spaces [ J ]. Proceedings of the Royal Society of EdinburghA, 2005, 135 (6) :1229 - 1239. 被引量:1
  • 6Cowen C C, MacCluer B D. Composition operators on spaces of analytic functions [M]. CRC Press, Boca Raton, FL, 1995. 被引量:1
  • 7ghu K H. Spaces of holomorphic functions in the unit ball [M]. New York: Springer, 2005. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部