摘要
加权微分复合算子理论是算子领域的重要组成部分.不同空间的加权微分复合算子的有界性和紧致性被深入地研究并出现了许多成果.在此基础上给出了单位圆盘上从利普希茨空间到有界解析函数空间的加权微分复合算子有界和紧致的性质,并证明了算子有界和紧致的充要条件.
Abstrac: Theories of weighted differentiation composition operators are important component parts in operator fields.Boundedness and compactness of the weighted differentiation composition operators between different spaces have been widely studied and a number of results have been given.On this basis,the necessary and sufficient conditions of the boundedness and compactness of the weighted differentiation composition operator from the Lipschitz spaces to bounded analytic function spaces in the unit disk are presented and proved.
出处
《菏泽学院学报》
2011年第5期25-27,共3页
Journal of Heze University
基金
国家自然科学基金资助项目(10971153)
国家自然科学基金资助项目(10671141)
关键词
利普希茨空间
有界解析函数空间
加权微分复合算子
Lipschitz spaces
bounded analytic function spaces
weighted differentiation composition operators