期刊文献+

基于非负矩阵分解的多波段SPOT图像融合及其应用 被引量:5

SPOT image fusion and application based on Non-negative Matrix Factorization
下载PDF
导出
摘要 SPOT遥感图像多光谱波段信息丰富,在土地覆盖、环境变化等诸多领域中得到广泛应用。图像融合近几年来成为学术界研究的热点,可以有效去除多光谱图像中的冗余,保留有用信息。对不同时段多光谱图像的融合进行地物变化检测,在灾害监测工作中具有重要的应用价值。文章针对多波段SPOT图像,利用基于非负矩阵分解的分时融合方法,对不同时段SPOT多波段图像进行融合,通过构造差值影像对变化区域进行检测。利用本文方法得到的图像可以清晰地表示出目标的变化区域,且正确率较高。结果表明,首先利用非负矩阵分解对不同时段图像进行融合,可以分别得到更为准确的融合图像,从而提高变化检测结果的精度。实验结果与传统方法进行了分析对比,证明了该方法的有效性。 Change detection has attracted much attention for the application of disaster monitoring.Multi-band SPOT remote sensing images are wildly used because of the abundant spectrum information.But the data redundancy needs to be eliminated using image fusion technique,which has developed rapidly.Non-negative matrix factorization(NMF) has been proven to be a very effective image fusion tool to extract useful information.In this paper,a time-sharing fusion method based on NMF is proposed for the purpose of change detection.First,the 3 band SPOT images of the same time were fused using NMF algorithm for different time period,respectively. Then the residual image,which was generated using the fused images of different time,was used to indicate the changed area.The results are able to present changed area clearly and show better performance compared to the traditional methods.It demonstrates that first using image fusing for images of different time period is able to exclude redundancy and keep useful information which helps to detect the changed area with higher accuracy.
机构地区 电子科技大学
出处 《信号处理》 CSCD 北大核心 2011年第10期1557-1560,共4页 Journal of Signal Processing
基金 中央高校基本科研业务费专项资金资助(ZYGX20092005) 自然科学基金资助(No.60802065)
关键词 变化检测 非负矩阵分解 图像融合 Change detection Non-negative matrix factorization Image fusion
  • 相关文献

参考文献6

二级参考文献41

  • 1冯德俊,李永树,兰燕.基于主成分变换的动态监测变化信息自动发现[J].计算机工程与应用,2004,40(36):199-202. 被引量:23
  • 2[1]Sunar F, Musaoglu N. Merging multiresolution SPOT P and landsat TM data: the effects and advantages [J]. INT J Remote Sensing, 1998, 19(2): 219-224. 被引量:1
  • 3[2]Pohl C, Van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications [J]. INT J Remote Sensing, 1998, 19(5): 823-854. 被引量:1
  • 4[3]Carper W J, Lillesand T M, Kiefer R W. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data [J]. Photogrammetric Engineering & Remote Sensing, 1990,56(4):459-467. 被引量:1
  • 5[4]Chavez P S. Comparison of three different methods to merge multiresolution and multispectral data: landsat TM and SPOT panchromatic [J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(3):259-303. 被引量:1
  • 6[5]Zhou J, Civco D L, Silander J A. A wavelet transform method to merge landsat TM and SPOT panchromatic data [J]. INT J Remote Sensing, 1998, 19(4): 743-757. 被引量:1
  • 7[7]Jim V. Multispectral imagery band sharpening study [J]. Photogrammetric Engineering & Remote Sensing,1996, 62(9): 1075-1083. 被引量:1
  • 8Zhenhua Li, Zhongliang Jing, Shaoyuan Sun. Pixel-clarity-based multifocus image fusion[J]. Chin. Opt. Lett., 2004,2(2): 82-85. 被引量:1
  • 9M. Novak, R. Mammone. Use of non-negative matrix factorization for language model adaptation in a lecture transcription task [C]. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake, 2001. 541-544. 被引量:1
  • 10D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 4111 (6755) :788-791. 被引量:1

共引文献121

同被引文献64

  • 1李红,刘晓华.基于小波变换和视觉特性的多光谱图像融合[J].信号处理,2006,22(1):32-34. 被引量:9
  • 2王毅,齐华,郝重阳.一种基于独立分量分析的模糊图像盲分离算法[J].计算机应用,2006,26(10):2366-2368. 被引量:8
  • 3Yu N, Qiu T, Bi F, Wang A. Image features Extraction and Fusion Based on Joint Sparse Representation [ J ]. IEEE Journal of selected topics in signal processing, 2011,5 (5) :1074-1052. 被引量:1
  • 4Rockinger O, Fechner T. Pixel-level image fusion: The case of image sequences [ J ]. Proc. SPIE, Bellingham, WA, 1998,3374:378 - 388. 被引量:1
  • 5Mitianoudis N. Stathaki T. Optimal Contrast Correction for ICA-Based Fusion of Multimodal Images [ J ]. IEEE SEN- SORS JOURNAL, December 2008,8 (12) : 2016-2025. 被引量:1
  • 6Candes E, Romberg J, Tao T. Robust uncertainty princi-/ ples:ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. Inform. Theory, 2006,52 (2) :489-509. 被引量:1
  • 7Donoho D. Compressed sensing[ J]. IEEE Trans. Inform. Theory, 2006,52(4) : 1289-1306. 被引量:1
  • 8Baraniuk R. Compressive sensing[ J ]. IEEE Signal Pro- cessing Magazine, 2007,24 ( 4 ) : 118-121. 被引量:1
  • 9Luo X, Zhang J, Yang J, Dai Q. Image Fusion in Com- pressed Sensing[ C] JJ IEEE Int. Conf. Image Process. Cairo, Egypt, 2009. 2205-2208. 被引量:1
  • 10Wan T, Canagarajah N, Achim A. Compressive Image Fu- sion [ C ~ ///IEEE Int. Conf. hnage Process, San Diego, California, USA, 2008. 1308-1311. 被引量:1

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部