摘要
The degradation of gate-induced drain leakage (GIDL) current in LDD nMOSFET under hot holes stress is studied in depth based on its parameter IDIFF. IDIFF is the difference of GIDL currents measured under two conditions of drain voltage VD = 1.4 V and gate voltage VG = -1.4 V while FoG is fixed. After the stress GIDL currents decay due to holes trapping in the oxide around the gate-to-drain overlap region. These trapped holes diminish A Ex which is the deference of the lateral electrical field of these two symmetrical measurement conditions in the overlap region so as to make IDIFF lessening. IOIFF extracted from GIDL currents decreases with increasing stress time t. The degradation shifts of IDIFF, MAX (A IDWF, MAX) follows a power law against t: △IDIFF' MAX (x t^m, m = 0.3. Hot electron stress is performed to validate the related mechanism.
The degradation of gate-induced drain leakage (GIDL) current in LDD nMOSFET under hot holes stress is studied in depth based on its parameter IDIFF. IDIFF is the difference of GIDL currents measured under two conditions of drain voltage VD = 1.4 V and gate voltage VG = -1.4 V while FoG is fixed. After the stress GIDL currents decay due to holes trapping in the oxide around the gate-to-drain overlap region. These trapped holes diminish A Ex which is the deference of the lateral electrical field of these two symmetrical measurement conditions in the overlap region so as to make IDIFF lessening. IOIFF extracted from GIDL currents decreases with increasing stress time t. The degradation shifts of IDIFF, MAX (A IDWF, MAX) follows a power law against t: △IDIFF' MAX (x t^m, m = 0.3. Hot electron stress is performed to validate the related mechanism.
基金
supported by the Specialized Research Fund of the Education Department of Shaanxi Province,China(No.11JK0902)
the Innovational Fund for Applied Materials of Xi'an,China(No.XA-AM-201012)