期刊文献+

探究分数阶微分方程边值问题的解的存在性 被引量:1

下载PDF
导出
摘要 主要对一类带有积分边值的分数阶微分方程的两点边值问题进行分析和研究.在特定的因素下,利用Schauder不动点定理,最终得出分数阶微分方程边值问题解的存在性.
作者 周明益
出处 《佳木斯大学学报(自然科学版)》 CAS 2011年第5期778-779,共2页 Journal of Jiamusi University:Natural Science Edition
  • 相关文献

参考文献3

二级参考文献19

  • 1Kilbas A A, Srivastava H M, Trujillo. J.J. Theory and Applications of Fractional Differential Equations[M]// North- Holland Mathematics Studies. Amsterdam: Elsevier, 2006. 被引量:1
  • 2Podlubny. I. Fractional Differential Equations[M]. New York: Academic press, 1993. 被引量:1
  • 3Zhanbing Bai, Haishen I.u, Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J. Math. Anal. Appl. , 2005(31):1495-505. 被引量:1
  • 4Daqing Jiang, Chengjun Yuan. The positive properties of the Green funtion for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application[J]. Nonlinear Anal. , 2010,72:710-719. 被引量:1
  • 5Xiaojie Xu, Daqing Jiang, Chengjun Yuan. Muhiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J]. Nonlinear Anal. , 2009,71:4626-4688. 被引量:1
  • 6Nonnemacher T F, Metzler R. On theRiemann_Liouville fractional calculus and some recent applications. Fractals, 1995, 3(3):557~566 被引量:1
  • 7Mainardi F. Fractional calculus: some basic problems in continuum and statisticalmechanics. In: Cappinteri A, Mainardi F, eds. Fractals and Fractional Calculus inContinuum Mechanics. New York: Springer Wien, 1997. 291~348 被引量:1
  • 8Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamicproblems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev, 1997,50(1): 15~67 被引量:1
  • 9Westerlund S. Causality, Report No. 940426, University of Kalmar, 1994 4 PodlubnyI. Fractional Differential Equations. San Diego: Academic Press, 1999. 86~231 被引量:1
  • 10Henry B I, Wearne S L. Fractional reaction_diffusion. Physica A, 2000, 276(3): 448-455 被引量:1

共引文献27

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部