期刊文献+

分数阶在磁流变液性能研究中的应用 被引量:7

Application of Fractional Calculus on the Study of Magnetorheological Fluids' Characterization
下载PDF
导出
摘要 将分数阶微积分引入Maxwell粘弹性流体的本构方程中,建立修正的Maxwell模型以描述磁流变液.通过贮能模量和耗能模量曲线,研究磁流变液的阻尼特性.在不同的磁流变液体组成参数实验条件下,理论的贮能模量和耗能模量能够与实验结果很好拟合,且模型阶数有着明显变化.研究表明,分数阶的本构方程能够很好地描述磁流变液的阻尼特性,方程分数阶算子与磁流变液物质参数有关. Fractional calculus is introduced to study the constitutive equation of Maxwell viscoelasticity fluids, and establish the modified Maxwell model to describe the magnetorheological fluids (MR fluids for short). The curves for storage modulus and loss modulus are used here for the analysis of the damping characteristics of magnetorbeological fluids. Under the different experiment conditions about the constituent parameters for MR fluids, the theoretical storage modulus and loss modulus can fit the corresponding experimental ones well, and the orders of the model are changed remarkably. It is indicated that the fractional calculus consititutive equation is available to describe the damping characteristics, and the fractional operators are connected to the parameters of the MR fluids.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第5期487-491,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省高新技术开发研究计划重点项目(2005H035)
关键词 磁流变液 分数阶 本构方程 Maxwell模型 magnetorheological fluids fractional calculus constitutive equations modified Maxwell model
  • 相关文献

参考文献13

二级参考文献46

共引文献72

同被引文献57

  • 1张红辉,廖昌荣,陈伟民,黄尚廉.磁流变阻尼器磁路设计及磁饱和有限元分析[J].功能材料与器件学报,2004,10(4):493-497. 被引量:33
  • 2同登科,王瑞和,杨河山.管内非Newton流体分数阶流动的精确解[J].中国科学(G辑),2005,35(3):318-326. 被引量:16
  • 3李延成,王炅,钱林方.基础激励作用下磁流变减振系统的非线性特性[J].功能材料,2006,37(6):986-988. 被引量:2
  • 4Ying Z G,Ni Y Q,Ko J M. Semi--active Optimal Control of Linearized Systems with Multi--degree of Freedom and Application[J]. Journal of Sound and Vibration, 2005,279 ( 1/2 ) : 373-388. 被引量:1
  • 5Spence B F Jr,Dyke S J,Sain M K,et al. Phenomenological Model of a Magnetorheological Damper[J]. Journal of Engineering Mechanics, 1997, 123 (3) :230-238. 被引量:1
  • 6Ray S S. A New Approach for the Application of Adomian Decomposition Method for the Solution of Fractional Space Diffusion Equation with Insulated Ends[J].Applied Mathematics and Computation, 2008,202 (2) : 544-549. 被引量:1
  • 7Odibat Z,Momani S. Numerical Methods for Nonlinear Partial Differential Equations of Fractional Order[J]. Applied Mathematical Modelling, 2008, 32(1) :28-39. 被引量:1
  • 8Chen Y Q,Ahn H S,Xue D Y. Robust Controllability of Interval Fractional Order Linear Time Invariant Systems[J]. Signal Process, 2006, 86 (10): 2794-2802. 被引量:1
  • 9Jimenez A H, Jara B V, Santiago J H. Relaxation Modulus in the Fitting of Polycarbonate and Poly Viscoelastic Polymers by a Fractional Maxwell Model[J]. Colloid and Polymer Science,2002,280 (5) : 485-489. 被引量:1
  • 10Davis G B, Kohandel M, Sivaloganathan S, et al. The Constitutive Properties of the Brain Paraenchyma Part 2. Fractional Derivative Approach[J]. Medical Engineering & Physics, 2006,28 (5) : 455- 459. 被引量:1

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部