期刊文献+

协同训练半监督学习二次伪迭代算法

Fake-iterative Algorithm for Co-training Semi-supervised Learning
下载PDF
导出
摘要 在半监督学习训练的过程中,由于分类器对噪声的引入使得分类器性能下降而影响分类准确性,本文提出一种具有自我调节的二次伪迭代算法。该算法延用Tri-training算法的3个分类器思想,在一定条件下引入少量的人工作业,从而避免一些标记难分类而影响训练的进行,并且采用自我调节功能,用于减少在分类过程中出现的噪声数据和降低对分类器性能提高无贡献数据的加入,同时运用二次伪迭代训练过程用于提高未标记样本的利用率和贡献值。通过实验和结果数据验证,该算法能有效改良分类器的性能和提高未标记样本的利用率及贡献值,分类的准确性得到一定提高。 In the semi-supervised learning process,the veracity of classification is affected because the classifier introduces the noise data to the training course.This paper proposes a kind of self-regulation and twice fake-iterative algorithm,which still uses the three classifier of tri-training algorithm.A small amount of manual work will be introduced under certain conditions to make the training process going on,thus,to avoid the difficulty in the classification of some labels.The self-regulatory function is also used to reduce the noise data and noncontributory data to be added in the classification process.Mean while,the utilization and contribution of unlabeled samples is improved by using twice fake-iterative.The experiment and the results show that this algorithm can effectively improve the classification performance,and the utilization and contribution of unlabeled samples.The veracity of classification is improved obviously.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期110-114,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 中科院软件所开放课题基金资助项目(SYSKF0701) 国家自然科学基金资助项目(61070062)
关键词 协同训练 二次伪迭代 自我调节机制 贡献值 人工作业 co-training twice fake-iterative self-regulation contribution manual work
  • 相关文献

参考文献11

  • 1梁吉业,高嘉伟,常瑜.半监督学习研究进展[J].山西大学学报(自然科学版),2009,32(4):528-534. 被引量:32
  • 2傅彦,周俊临.基于无监督学习的盲信号源分离技术研究[J].电子科技大学学报,2004,33(1):63-66. 被引量:8
  • 3周志华.半监督学习中的协同训练风范[M]//机器学习及其应用.北京:清华大学出版社,2007:259-275. 被引量:12
  • 4杜明,周而重.机器学习在模式识别中的应用研究[J].科技信息,2009(9):37-38. 被引量:6
  • 5NIGAM K,McCALLUM A K,THRUN S,et al. Text classification from labeled and unlabeled documents using EM [J]. Machine Learning ,2000,39(2/3): 103-134. 被引量:1
  • 6JOACHIMS T. Transductive inference for text classification using support vector machines [C]//Proceedings of the 16th International Conference on Machine Learning. New York:Morgan Kaufmann, 1999:200-209. 被引量:1
  • 7BLUM A,LAFFERTY J,RWEBANGIRA M R,et al. Semi-supervised learning using randomized mincuts[C]//Proceedings of the 21st International Conference on Machine Learining. New York :ACM, 2004: 97-104. 被引量:1
  • 8BLUM A ,MITCHELL T. Combining labeled and unlabeled data co-training[C]//Proceedings of the 11th annual conference on Computational Learning Theory. New York : ACM, 1998 : 92-100. 被引量:1
  • 9GOLDMAN S,ZHOU Yan. Enhancing supervised learning with unlabeled data[C]//Proceedings of the 17th International Conference on Machine Learning. New York:Morgan Kaufmann, 2000:327-334. 被引量:1
  • 10ZHOU Zhi-hua,Ll Ming. Tri-training:exploiting unlabeled data using three classtifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (11): 1529-1541. 被引量:1

二级参考文献30

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部