期刊文献+

基于差分进化优化的约简最小二乘支持向量机 被引量:3

Reduced least squares support vector machine optimized by differential evolution
下载PDF
导出
摘要 针对最小二乘支持向量回归机的解缺乏稀疏性、预测速度慢等问题,采用向量相关分析在高维特征空间约简支持向量.为使约简模型能最佳逼近原模型,提出原模型与约简模型预测训练样本的平方误差和作为新性能评价准则.为得到最优约简模型,定义了离散加法、减法和乘法算子,并将新性能评价准则作为适应度函数,采用整数编码的差分进化算法进行全局优化.4个标准数据集实验结果表明,与前人提出的3种性能评价准则相比,新算法得到的约简模型具有更好的泛化性能,并且在泛化性能略有下降情况下,支持向量数目大幅减少. Aiming at lack of sparseness of the solutions of least squares support vector regression machine which leads to slow prediction speed and other problems,the vector correlation analysis was employed to reduce the support vectors in the high dimensional feature space.In order to make the reduced model best approximate the original one,sum squared prediction errors of training samples between the reduced model and original one were taken as the novel performance evaluation criterion.Discrete addition,subtraction and multiplication operator were defined and the novel performance evaluation criterion was used as fitness function.The best reduced model globally optimized by integer coded differential evolution algorithm could be obtained.The experimental results on four benchmark datasets show that reduced model obtained by the novel algorithm has better generalization performance,compared with the other three performance evaluation criterions presented before.And reduced model obviously decreases support vectors at cost of little generalization performance.
作者 高润鹏 伞冶
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2011年第8期1012-1018,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61074127)
关键词 最小二乘支持向量回归机 稀疏性 向量相关分析 差分进化 整数编码 支持向量约简 least squares support vector regression machine sparseness vector correlation analysis differential evolution integer coded support vector reduction
  • 相关文献

参考文献24

  • 1VAPNIK V N. The nature of statistical learning theory[ M]. New York: Springer Verlag, 1995: 138-145. 被引量:1
  • 2SUYKENS J A K, VAN GESTEL T, de BRABANTER J, et al. Least squares support vector machines [ M ]. Singapore : World Scientific, 2002: 86-89, 98-99. 被引量:1
  • 3向峥嵘,陈庆伟.基于小波和LS-SVM的软测量建模方法[J].智能系统学报,2010,5(1):63-66. 被引量:2
  • 4刘胜,宋佳,李高云.PSO并行优化LSSVR非线性黑箱模型辨识[J].智能系统学报,2010,5(1):51-56. 被引量:9
  • 5CHU W, ONG C J, KEERTHI S S. An improved conjugate gradient scheme to the solution of least squares SVM [ J ]. IEEE Transactions on Neural Networks, 2005, 16(2) : 498-501. 被引量:1
  • 6KEERTHI S S, SHEVADE S K. SMO algorithm for least- squares SVM formulations [ J ]. Neural Computation, 2003, 15(2) : 487-507. 被引量:1
  • 7De BRABANTER K, De BRABANTER J, SUYKENS J A K, et al. Optimized fixed-size kernel models for large data sets[J]. Computational Statistics and Data Analysis, 2010, 54(6) : 1484-1504. 被引量:1
  • 8JIAO L C, BO L F, WANG L. Fast sparse approximation for least squares support vector machine [ J ]. IEEE Transactions on Neural Networks, 2007, 18(3) : 685-697. 被引量:1
  • 9ZHAO Y P, SUN J G. Recursive reduced least squares sup- port vector regression [ J ]. Pattern Recognition, 2009, 42 (5) : 837-842. 被引量:1
  • 10YANG X W, LU J, ZHANG G Q. Adaptive pruning algo- rithm for least squares support vector machine classifier [J]. Soft Computing, 2010, 14(7) : 667-680. 被引量:1

二级参考文献57

  • 1张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2005,20(6):621-624. 被引量:27
  • 2张莉,席裕庚.基于支持向量机的可分离非线性动态系统辨识[J].自动化学报,2005,31(6):965-969. 被引量:4
  • 3刘胜,李妍妍.自适应GA-SVM参数选择算法研究[J].哈尔滨工程大学学报,2007,28(4):398-402. 被引量:46
  • 4GONZALEZ G D.Soft sensors for processing plants[C]//Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials.Honolulu,Hawaii,USA,1999:59-69. 被引量:1
  • 5VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995:123-180. 被引量:1
  • 6SUYKENS J A K.Nonlinear modeling and support vector machines[C]//Proceedings of Technology of the 18th IEEE Instrumentation and Measurement Conference.Budapest,Hungary,2001,1:287-294. 被引量:1
  • 7SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300. 被引量:1
  • 8SUYKENS J A K,VAN GESTEL T,DE BRABANTER J,et al.Least squares support vector machines[M].Singapore:World Scientific Press,2002:308-342. 被引量:1
  • 9XIANG Zhengrong,LIU Songqing.Component content soft-sensor in rare-earth extraction based on PSO and LS-SVM[C]//The 4th International Conference on Natural Computation (ICNC'08).Jinan,China,2008,6:392-395. 被引量:1
  • 10SUN Jun,XU Wenbo,FENG Bin.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems.Singapore,2004:111-116. 被引量:1

共引文献67

同被引文献32

  • 1沃焱,韩国强,张波.一种新的基于特征的图像内容认证方法[J].计算机学报,2005,28(1):105-112. 被引量:32
  • 2杨世元,吴德会,苏海涛.基于PCA和SVM的控制图失控模式智能识别方法[J].系统仿真学报,2006,18(5):1314-1318. 被引量:18
  • 3吴少雄.智能统计工序质量控制的体系研究[J].计算机集成制造系统,2006,12(11):1832-1837. 被引量:12
  • 4MASOOD I, HASSAN A. Issues in development of artificial neural network-based control chart pattern recognition schemes [ J ]. Euro- pean Journal of Scientific Research,2010,39(3) : 336-355. 被引量:1
  • 5HASSAN A, SHARIFF N B M, SHAHAROUN A M, et al. Improved SPC chart pattern recognition using statistical features [ J ]. Intema- tional Journal of Production Research ,2003,41 (7) : 1587-1603. 被引量:1
  • 6GAURI S K, CHAKRABORTY S. Feature-based recognition of con- trol chart patterns [ J ]. Computer & Industrial Engineering,2006, 51 :?26-?42. 被引量:1
  • 7GAURI S K, CHAKRABORTY S. Recognition of control chart pat- terns using improved selection of features [ J ]. Computers & Indus- trial Engineering,2009,56(4) :1577-1588. 被引量:1
  • 8WANG C H, GUO R S, CHIANC M H, et al. Decision tree based control chart pattern recognition[ J]. Internal Journal of Production Research,2008,46(17) : 4889-4901. 被引量:1
  • 9EBRAHIMZADEH A, RANAEE V. Control chart pattern recognition using an optimized neural network and efficient features [ J ]. ISA Transactions ,2010,49 (3) :387-393. 被引量:1
  • 10RANAEE V, EBRAHIMZADEH A. Control chart pattern recognition using a novel hybrid intelligent method [ J ]. Applied Soft Compu- ting,2011,11 (2) :2676-2686. 被引量:1

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部