期刊文献+

基于粗集理论的属性约简改进算法 被引量:1

Improved attribute reduction algorithm based on rough set theory
下载PDF
导出
摘要 粗集理论是一种处理不确定、不一致数据的新的数学工具。属性约简是粗集理论研究的重要内容,是在保持信息系统分类能力不变的基础上,删除冗余属性。而求取最优约简是一个NP难题,为了能够有效地获取信息系统的约简,提出一种改进算法。该算法以知识量作为启发式信息,每次删除知识量小的属性,直到找到约简为止。分析及实例表明此算法具有有效性。 Rough set (RS) theory is a new mathematical tool to deal with knowledge, particularly when knowledge is imprecise or inconsistent. Attribute reduction is one of the important issues of rough set theory and its application range is extensive. It is to remove superfluous knowledge from information systems while preserving the consistency of classification. However, it has been proved that finding the best reduction is the NP-hard problem. For the purpose of getting the reduction of systems effectively, an improved algorithm is put forward, The algorithm which takes knowledge magnitude as the heuristic information, and deletes the attribute which contains small knowledge magnitude till getting the reduction. The analysis and experiment show that this algorithm is effective.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第13期3432-3434,共3页 Computer Engineering and Design
关键词 粗集理论 属性约简 知识量 启发式信息 算法 rough set theory attribute reduction knowledge magnitude heuristic information algorithm
  • 相关文献

参考文献9

二级参考文献29

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2[5]Starzyk J, Nelson D E, Sturtz K. Reducts. A mathematical foundation for improved reduct generation in information systems. Journal of Knowledge and Information Systems, 2000, 2(2):131~146 被引量:1
  • 3[6]Bazan J G, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decisions tables. In: Ras Z W, Zemankiva M eds. Methodologies for Intelligent Systems. Berlin: Springer-Verlag,1994. 346~355 被引量:1
  • 4[7]Ziarko W. Variable precision rough sets model. Journal of Computer and Systems Sciences, 1993, 46(1):39~59 被引量:1
  • 5[8]Pawlak Z. Grzymala-Busse J, Slowinski R etal. Rough sets.Communications of the ACM, 1995, 38(11): 89~95 被引量:1
  • 6[11]Ying Wu, Thomas S Huang. Hand moeling, analysis, and recognition. IEEE Signal Processing Magazine, 2001(5):51~60 被引量:1
  • 7[12]Lin J, Wu Y, Huang T S. Modeling human hand constraint. In: Proceedings of Workshop on Human Motion. Austin, Texas USA,2000. 121~126 被引量:1
  • 8[1]Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982, 11(5): 341~356 被引量:1
  • 9[2]Wong S K M, Ziarko W. Optimal decision rules in decision table. Bulletin of Polish Academy of Sciences, 1985,33(11~12):693~696 被引量:1
  • 10[3]Hu Xiao-Hua. Knowledge discovery in databases:an attrbute oriented rough set approach[Ph D dissertation]. University of Regina, Regina, Canada,1995 被引量:1

共引文献75

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部