摘要
Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed.The friction-reduction,anti-wear and self-repairing performance of various surface roughness friction pairs were examined by friction testing machine.An operation comparison was made between SJ10W-40 lubricant with and without HMS.The surface morphology and elementary composition of the grinding cracks were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that the lubrication state changes from boundary lubrication into mixed lubrication after operation in lubricant with HMS.The friction-reduction,anti-wear and self-repairing performance of the friction pairs with various surface roughness are distinctly different.There is a repairing film whose material is different from substrate material on the grinding cracks.In addition,Si,Mg,O,Al and other elements are deposited on the repairing film which contains nanocrystals of these elements.And HMS self-repairing material possesses superior performance of friction-reduction,anti-wear and self-repairing effects.
Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed. The friction-reduction, anti-wear and self-repairing performance of various surface roughness friction pairs were examined by friction testing machine. An operation comparison was made between SJ10W-40 lubricant with and without HMS. The surface morphology and elementary composition of the grinding cracks were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The.results show that the lubrication state changes from boundary lubrication into mixed lubrication after operation in lubricant with HMS. The friction-reduction, anti-wear and self-repairing performance of the friction pairs with various surface roughness are distinctly different. There is a repairing film whose material is different from substrate material on the grinding cracks. In addition, Si, Mg, O, Al and other elements are deposited on the repairing film which contains nanocrystals of these elements. And HMS self-repairing material possesses superior performance of friction-reduction, anti-wear and self-repairing effects.
基金
Projects(50735006,50904072) supported by the National Natural Science Foundation of China
Project(2007CB607601) supported by the National Basic Research Program of China