期刊文献+

基于最小二乘支持向量机的大坝变形预测模型 被引量:5

Dam deformation forecasting model based on least squares support vector machine
下载PDF
导出
摘要 变形是对大坝结构性态和安全状况最直接、可靠的反映,是大坝安全监测的重点项目之一。大坝变形具有较强的非线性特点,传统的预测方法有时精度不高。建立在统计学习理论和结构风险最小原理基础上的支持向量机算法能较好地解决小样本、非线性、高维数等问题。文章引入标准支持向量机的一种扩展——最小二乘支持向量机,参照传统逐步回归统计模型建模思想,建立了基于最小二乘支持向量机的大坝变形预测模型。通过紧水滩大坝变形实例计算,表明了该方法的可行性和优越性。 Deformation is the most direct and reliable reflection of structural state and safety situation in a dam, which is one of the key items in dam safety monitoring. Dam deformation is strongly non-linear and sometimes the effect of traditional forecasting methods is not very precise. Support vector machine based on statistical learning theory and structural risk minimization principle can deal with small samples, non-linear, high-dimensional problems more effectively. This paper introduces the LS-SVM which is an extension of support vector machines, and a dam deformation prediction model based on the LS-SVM was established according to the ideas of stepwise regression statistical model. Through calculation of Jinshuitan dam deformation, the results show this method is feasible and superior.
作者 何明 薛桂玉
出处 《西北水电》 2011年第B09期53-56,共4页 Northwest Hydropower
基金 国家自然科学基金(51079114)
关键词 最小二乘支持向量机 变形预测 统计模型 least squares support vector machine deformation prediction statistical model
  • 相关文献

参考文献5

二级参考文献34

  • 1荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 2VNVapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:7
  • 3Bakirtzis A G, Theocharis J B, Kiartzis S J, et al. Short term load forecasting using fuzzy neural networks[J].IEEE Transactions on Power Systems. 1995, 10 (3): 1518-1 524. 被引量:1
  • 4Kiartzis S J, Bakirtzis A G, Petridis V. Short-term load forecasting using neural networks[J]. Electric Power Systems Research, 1995, 33 (1) : 1-6. 被引量:1
  • 5Kim K H, Park J K, Hwang K J, ct al. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems[J]. IEEE Transactions on Power Systems. 1995, 10 (3): 1534-1539. 被引量:1
  • 6Maifeld T, Sheblc G. Short-term load forecasting by a neural network and a refined genetic algorithm [J].Electric Power Syatems Research, 1994, 31 (3): 147-152. 被引量:1
  • 7Chou Jung-Huai. Genetic algorithm in structural damage detection[J]. Computers & structures, 2001, 79 (14):1 335-1 353. 被引量:1
  • 8Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Transactions on Neural Networks, 1994, 5(1):39-53. 被引量:1
  • 9G P Liu.Nonlinear Identification and Control:a Neural Network Approach[M].London,New York:Springer,2001. 被引量:1
  • 10V N Vapnik,S Golowich,A Smola.Support vector method for function approximation,regression estimation,and signal processing[C]//In M Mozer,M Jordan,and T Petsche,(eds.).Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1997:281-287. 被引量:1

共引文献109

同被引文献51

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部