期刊文献+

大坝安全诊断的混沌优化神经网络模型 被引量:9

A chaos-optimized neural network model for dam safety monitoring
下载PDF
导出
摘要 为了提高大坝变形的预测精度,采用小波变换和分形理论对大坝位移观测数据的非线性动力学特性进行了分析,揭示了其具有低维混沌动力特性,这为大坝变形预测模型的建立提供了理论依据和先验知识。基于低维混沌动力特性,设计了能捕获大坝位移观测数据全局动力特性,兼具神经网络模型结构优化和动力机制时新的混沌优化神经网络大坝变形预测模型。在工程实例中,由多个度量指标组成量化评价体系,对模型预测性能进行综合评价,结果表明,所建模型比传统BP神经网络和ARMA模型具有更高的预测精度。 Dam deformation prediction is important for dam safety monitoring and has become a focus of increasing interest in recent years. In this study, on the basis of nonlinear dynamic property analysis of the observations of dam displacements, a novel methodology is proposed to establish dam deformation prediction model with improved prediction precision. Firstly, the dynamic properties of observations of dam displacements are studied by combined wavelet transform with fractal, and the results reveal that dam displacements possess certain low dimensional chaotic character. This provides theoretical foundation and transcendental knowledge for relational establishment of dam deformation prediction model. Moreover, derived from the low dimensional chaotic character, a chaos-optimized neural network model for dam deformation prediction is constructed, which is not only capable of capturing the dynamic properties of observations of dam displacements but also of implementing the model's structural optimization and dynamic mechanism refreshing. Finally, in the practical application of dam deformation prediction, the model performance is quantificationally assessed by multiple indices. The result demonstrates that chaos-optimized neural network model holds higher prediction precision than the conventional back propagation (BP) neural network and ARMA models; and therefore, it is promising for dam safety monitoring.
出处 《岩土力学》 EI CAS CSCD 北大核心 2006年第8期1344-1348,共5页 Rock and Soil Mechanics
基金 中国博士后科学基金资助项目(No.2005038236) 国家自然科学基金资助项目(No.50379005)
关键词 大坝位移 低维混沌 动力特性 小波变换 混沌优化神经网络 dam displacements low dimensional chaos dynamic properties wavelet transform chaotic-optimimal neural networks
  • 相关文献

参考文献9

二级参考文献50

  • 1黄润生,周家斌,张仁涛,王魁霞.武汉地区雨强分维数随时间变化初探[J].武汉大学学报(自然科学版),1995,41(1):109-115. 被引量:4
  • 2刘洪,李必强.基于混沌吸引子的时间序列预测[J].系统工程与电子技术,1997,19(2):23-28. 被引量:29
  • 3杨晓红,刘乐善.用遗传算法优化神经网络结构[J].计算机应用与软件,1997,14(3):59-65. 被引量:18
  • 4Bakirtzis A G, Theocharis J B, Kiartzis S J, et al. Short term load forecasting using fuzzy neural networks[J].IEEE Transactions on Power Systems. 1995, 10 (3): 1518-1 524. 被引量:1
  • 5Kiartzis S J, Bakirtzis A G, Petridis V. Short-term load forecasting using neural networks[J]. Electric Power Systems Research, 1995, 33 (1) : 1-6. 被引量:1
  • 6Kim K H, Park J K, Hwang K J, ct al. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems[J]. IEEE Transactions on Power Systems. 1995, 10 (3): 1534-1539. 被引量:1
  • 7Maifeld T, Sheblc G. Short-term load forecasting by a neural network and a refined genetic algorithm [J].Electric Power Syatems Research, 1994, 31 (3): 147-152. 被引量:1
  • 8Chou Jung-Huai. Genetic algorithm in structural damage detection[J]. Computers & structures, 2001, 79 (14):1 335-1 353. 被引量:1
  • 9Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Transactions on Neural Networks, 1994, 5(1):39-53. 被引量:1
  • 10吴中如,大坝综合评判专家系统,1997年 被引量:1

共引文献120

同被引文献75

引证文献9

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部