期刊文献+

FRFT域LFM信号的调频率分辨率与相位差的关系 被引量:2

Relationship between chirp-rate resolution of LFM signals and phase difference in FRFT domain
下载PDF
导出
摘要 相位差是影响信号分辨的一个重要因素。当采样率足够高时,研究在分数阶傅里叶变换域两个线性调频(linear frequency modulation,LFM)信号的相位差与调频率分辨率的约束关系。通过建立调频率的分辨模型,推导出在两个LFM信号可分辨范围内相位差的上界和下界,只有当相位差处于上界和下界之间时,两个LFM信号才可以分辨。仿真结果表明,分辨率的理论值与实际值之间偏差较小,基本吻合。 Phase difference between signals effects deeply on signal resolution. In iractional Pourmr transIorm (FRFT) domain, the relationship between phase difference and chirp-rate resolution of two linear frequency modulalion (LFM) signals at high oversampling rate is investigated. By establishing a resolution model of chirp tale, the curves of upper bound and lower bound of phase difference is calcul.ated when two LFM signals are distinguished. Only when phase difference is located at between the upper bound and the lower bound, can the two LFM signals be distinguished. Simulation results show the deviation of resolution is so small that theoretical values of resolution are consistent basically with actual values.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第10期2194-2197,共4页 Systems Engineering and Electronics
关键词 分数阶傅里叶变换 分辨率 线性调频 调频率 相位差 fractional Fourier transform (FRFT) resolution linear frequency modulation chirp rate phase difference
  • 相关文献

参考文献15

  • 1Pei S C, Ding J J. Fractional Fourier transform, Wigner distribution, and filter design for stationary and nonstationary random processes [J]. IEEE Trans. on Signal Processing, 2010, 58 (8) :4079 -4092. 被引量:1
  • 2Tao R, Meng X Y, Wang Y. Image encryption with multiorders of fractional Fourier transforms[J]. IEEE Trans. on Information Forensics and Security,2010,5(4) :734 - 738. 被引量:1
  • 3Pan W, Qin K H, Chen Y. An adaptable multilayer fractional Fourier transform approach for image registration [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(3):400 -414. 被引量:1
  • 4Elgamel S A, Soraghan J. Enhanced monopulse tracking radar using optimum fractional Fourier transform [J]. IET Radar, Sonar and Navigation,2011,5(1) :74 - 82. 被引量:1
  • 5杨光,李绍滨,姜义成.基于分数阶傅里叶变换的星载SAR信号参数实时估计[J].系统工程与电子技术,2010,32(8):1649-1651. 被引量:7
  • 6Zheng J, Wang Z L. ICI analysis for FRFT OFDM systems to frequency offset in time-frequency selective fading channels [J]. IEEE Communications Letters, 2010,14(10) : 888 - 890. 被引量:1
  • 7Cowell D M J, Freear S. Separation of overlapping linear fre quency modulated (LFM) signals using the fractional Fourier transform [J]. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control ,2010,57(10) :2324 - 2333. 被引量:1
  • 8Sejdic E, Djurovic I, Stankovic L J. Fractional Fourier transform as a signal processing tool: an overview of recent developments [J].Signal Processing ,2011,91(6):1351-1369. 被引量:1
  • 9邓兵,陶然,杨曦.分数阶Fourier域的采样及分辨率分析[J].自然科学进展,2007,17(5):655-661. 被引量:16
  • 10刘锋,黄宇,陶然,王越.Chirp-Rate Resolution of Fractional Fourier Transform in Multi-component LFM Signal[J].Journal of Beijing Institute of Technology,2009,18(1):74-78. 被引量:12

二级参考文献46

共引文献175

同被引文献30

  • 1孙志国,周彬,曹雪,等.正弦型调频键控调制通信方法[P].中国:CN102223331A,2011-10-19. 被引量:3
  • 2Tsai Y R, Chang J F. The feasibility of combating multipath in terference by chirp spread spectrum techniques over Rayleigh and Rician fading channels [C] // Proc. of the 3rd International Symposium on Spread Spectrum Techniques and Applications, 1994: 282-286. 被引量:1
  • 3Wang P, Li H B, Djurovic I, et al. Integrated cubic phase func- tion for linear FM signal analysis[J]. IEEE Trans. on Aero- space and Electronic Systems, 2010, 46(3) : 963 - 977. 被引量:1
  • 4Zheng G X, Feng J Z, Jia M H. Very minimum chirp keying as a novel ultra narrow band communication seheme[C]//Proc, of the 6th International Conference on Information, Communica tions & Signal Processing, 2007:1687 - 1689. 被引量:1
  • 5Ji W L, Zheng G X, Bao M Q, et al. Ultra narrowband wireless communication technology based on QVMCK modulation[C]//Proc. of China Japan Joint Microwave Conference, 2008:164 - 166. 被引量:1
  • 6Pei S C, Ding J J. Fractional Fourier transform, wigner distri bution, and filter design for stationary and nonstationary ran dora processes[J]. IEEE Trans. on Signal Processing, 2010,58(8): 4079- 4092. 被引量:1
  • 7Ozaktas H M, Arikan O, Kutay M A, et al. Digital computa- tion of the fractional Fourier transform[J]. IEEE Trans. on Signal Processing, 1996, 44(9) : 2141 - 2150. 被引量:1
  • 8Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transform [J]. IEEE Trans. on Signal Processing, 2000, 48(5) : 1338 - 1353. 被引量:1
  • 9White P R, Locke J. Performance of methods based on the fractional Fourier transform for the detection of linear frequen cy modulated signals[J]. IEEE Trams. on Signal Processing, 2012, 6(5): 478-493. 被引量:1
  • 10Almeida L B. The fractional fourier transform and time-fre- quency representations [J]. IEEE Trans. on Signal Proces- sing, 1994, 42(11): 3084-3091. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部