摘要
研究了有界噪声与谐和激励作用下四分之一车模型的动力学行为。首先给出了有界噪声激励与谐和激励下四分之一车模型的具体表达式。然后利用随机Melnikov方法得到混沌运动的必要条件。结果表明临界幅值随着强度参数的增加而增加,且当强度参数增大到一定值时,临界幅值保持不变。最后,用两类数值方法即最大Lyapunov指数与庞加莱截面验证了上述结果。
The dynamic behavior of quarter-car model subjected to combined bounded noise and harmonic excitation is investigated. Firstly, concrete expression of quarter-car model subjected to combined bounded noise and harmonic excitations is given. Secondly, the random Melnikov method is applied to establish the necessary conditions of existence of chaotic motion, the results implies that the critical amplitude increases as the intensity parameter increases and remain the same when the intensity parameter increases to a certain value. Finally, the conclusion is verified by simulating the largest Lyapunov exponents and the Poincare map numerically.
出处
《科学技术与工程》
2011年第28期6898-6903,共6页
Science Technology and Engineering
基金
国家自然科学基金(10872165
10932009)资助