摘要
在传统检索模型的基础上,结合本体的概念,提出一种基于本体语义树的主题空间向量模型。该模型能够用语义概念树描述一个主题,与传统基于关键词描述主题的方法不同,它能够描述概念之间的简单语义关系。在此基础上,给出HTML页面内容与主题相关度的计算方法。在分析URL的相关度时,不仅分析链接锚文本与主题相关度,还结合了改进的PageRank算法来分析链接的相关度。只有当链接相关度达不到给定的阀值时才会去下载链接对应的页面。这样的URL相关度计算方法可以大大减少不必要的计算开销,又可以充分地利用锚文本和链接重要度信息。最后还对那些不确定是否与主题相关的网页进行内容相关度计算,进而最终确定是否应该采集此网页。
Based on the traditional search model, combining the concept of ontology, this paper proposes a thematic network crawling model based on ontology semantic tree. Unlike the traditional keyword-based subject description methods, the model can describe a subject with semantic concept tree with which it is simple to describe the semantic relationships between concepts. On this basis, the paper presents a method to calculate the relevance of HTML pages and the topic. When analyzing the relevance of URL, it does not only analyze the relevance of link anchor text and the topic, but also analyzes the relevance of the link with an improved PageRank algorithm. Only when the relevance does not reach a given threshold will it download the page corresponding to the URL. This calculation method can greatly reduce unnecessary computational overhead, and make fully use of anchor text and link importance of information. Finally, it calculates the relevance of a web page which is not sure whether it is related to the topic, and ultimately determines whether this page should be collected or not.
出处
《计算机系统应用》
2011年第10期44-48,共5页
Computer Systems & Applications
关键词
本体
概念树
主题网络
锚文本
主题相关度
ontology
semantic tree
thematic network
anchor text
degree subject