期刊文献+

弧焊熔滴过渡混沌的若干问题探讨

Discussion on Several Problems for Chaotic Metal Transfer in Arc Welding
下载PDF
导出
摘要 探讨指出现今弧焊熔滴过渡数学模型中存在只关注于单个周期内不同过渡阶段熔滴的特征行为,而忽略过渡周期之间关联特性的不足。通过叙述相关的混沌基本概念,以及结合滴水龙头混沌的相关运动规律,提出建立弧焊混沌数学模型在本质上能更真实地反映熔滴过渡过程。介绍了滴状过渡和短路过渡中混沌研究现状,指出目前急需解决的问题是建立精确的混沌数学模型。展望了弧焊在不同混沌控制目标中的应用前景。 The drawback in mathematic model of metal transfer was analyzed,and it was the attention being only paid to droplet movement of different stages in a single transfer period.According to the related chaos theory and the related chaotic movement characteristics in dripping faucet,a establishing chaotic model can reflect better in essence the metal transfer is put forward.The progresses of chaotic research on drop transfer and short circuiting transfer were introduced and the problem was pointed out that an accurate chaotic model is needed urgent to be established at present.The developments in different chaotic control objectives of arc welding in the future were prospected.
机构地区 天津大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第19期2365-2369,共5页 China Mechanical Engineering
基金 高等学校博士学科点专项科研基金资助项目(20090032120023)
关键词 弧焊 熔滴过渡 混沌数学模型 混沌控制 arc welding metal transfer chaotic model chaotic control
  • 相关文献

参考文献22

  • 1Simpson S W. Metal Transfer Instability in Gas Metal Arc Welding[J]. Science and Technology of Welding and Joining,2009,14(4) :262-273. 被引量:1
  • 2吕小青..CO<,2>焊短路过渡的混沌性探索[D].华南理工大学,2006:
  • 3Kim Y S,Eagar T W. Analysis of Metal Transfer in Gas Metal Arc Welding[J]. Welding Journal, 1993, 72(6) :269-278. 被引量:1
  • 4Zhu Z M,Wu W,Chen Q. Random Nature of Drop let Size and Its Origins in Short Circuit CO2 Arc Welding[J]. Science and Technology of Welding and Joining, 2005,10 (6) : 636-642. 被引量:1
  • 5Lin Q, Li X, Simpson S W. Metal Transfer Meas urements in Gas Metal Arc Welding[J]. Journal of Physics D: Applied Physics, 2001 , 34 ( 3 ) : 347-353. 被引量:1
  • 6武传松著..焊接热过程与熔池形态[M].北京:机械工业出版社,2008:270.
  • 7Wu C S, Chen M A, Li S K. Analysisi of Exicted Droplet Oscillation and Detachment in Active Con- trol of Metal Transfer[J]. Computational Materials Science,2004,31(1/2) : 147-154. 被引量:1
  • 8刘秉正,彭建华编著..非线性动力学[M].北京:高等教育出版社,2004:589.
  • 9吕金虎 ... ..混沌时间序列分析及其应用[M],2002.
  • 10Shaw R. The Dripping Faucet as a Model Chaolic System[M]. California: Aerial Press, 1984. 被引量:1

二级参考文献26

  • 1曹彪,吕小青,曾敏,王振民,黄石生.短路过渡电弧焊电流信号的近似熵分析[J].物理学报,2006,55(4):1696-1705. 被引量:33
  • 2廖旺才,胡广书,杨福生.心率变异性的非线性动力学分析及其应用[J].中国生物医学工程学报,1996,15(3):193-201. 被引量:18
  • 3傅希圣,Transaction of JWRI,1983年,12卷,2期,7页 被引量:1
  • 4Albano A M,Muench J,SchwartzC.Singular-value decomposition and the Grassberger-Procaccia algorithm[J].Physical ReviewA,1988,38(6):3017-3026. 被引量:1
  • 5Fraser A M,Swinney H L.Independent coordinates for strange attractors from mutualinformation[J].Physical Review A,1986,33(2):1134-1140. 被引量:1
  • 6Rosenstein M T,Collins J J,De Luca C J.Reconstruction expansion as a geometry-basedframework for choosing proper delay times[J].Physica D,1994,73(1/2):82-98. 被引量:1
  • 7LU Jinhu,Lu Junan,Chen Shihua.Analysis and application of chaotic time series [ M].Wuhan:Publisher of Wuhan University,2002.65-66. 被引量:1
  • 8Wolf A,Swift J B,Swinney H L.Determining Lyapunov exponents from a timeseries[J].Physica D,1985,16(3):285-317. 被引量:1
  • 9Takens F.Detection strange attractor in turbulence[A].In:Rand D A,Young L S,eds.LectureNotes in Mathematica[C].NewYork:Springer-verlag,1981.366-381. 被引量:1
  • 10Gibson J F, Farmer J D, Casdagli M, et al. An analytic approach to practical state space reconstruction[J]. Physica D, 1992, 57(1,2): 1-30. 被引量:1

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部