期刊文献+

基于混沌和二维近似熵的滚动轴承故障诊断 被引量:12

Fault diagnosis of rolling bearings based on chaos and two-dimensional approximate entropy
下载PDF
导出
摘要 针对滚动轴承故障的特征频率处于较低频带,容易被噪声淹没而难于直接检测的问题,提出了在衡量二维时间序列复杂性方面具有普遍意义的二维近似熵,及基于混沌和二维近似熵的滚动轴承故障诊断方法。该方法利用混沌振子对微弱周期信号的敏感性,可以直接检测低频段内滚动轴承微弱的故障特征频率。同时,以二维近似熵作为测度,能够从二维角度全面地量化振子的相变规律,从而客观、准确地识别振子状态并确定故障类型。对滚动轴承内、外圈故障的诊断实例验证了该方法的有效性。 The fault characteristic signals of rolling bearings are in low frequency band, and the useful signals are often buried in heavy noise and difficult to be detected. Two-dimensional approximate entropy (AE2d) was proposed to measure the stares of chaotic oscillator, and a method based on chaotic oscillator and AE2d was presented to diagnose rolling bearings fault. By using the characters of chaotic oscillator being sensitive to weak periodic signal, and AE2d being effective to recognizing the change of chaotic oscillator, the fault could be identified. Diagnosis of inner and outer race fault of rolling bearing confirm the effectiveness of this method.
出处 《振动工程学报》 EI CSCD 北大核心 2007年第3期268-273,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50475117) 天津市应用基础研究计划重点项目(05YFJZJC01800)
关键词 滚动轴承 故障诊断 混沌振子 近似熵 特征提取 rolling bearing fault diagnosis chaotic oscillator approximate entropy feature extraction
  • 相关文献

参考文献10

二级参考文献23

  • 1冷永刚,王太勇,郭焱,汪文津,胡世广.级联双稳系统的随机共振特性[J].物理学报,2005,54(3):1118-1125. 被引量:26
  • 2廖旺才,胡广书,杨福生.心率变异性的非线性动力学分析及其应用[J].中国生物医学工程学报,1996,15(3):193-201. 被引量:18
  • 3[1]Burrus C S,Gopinath R A,Guo Haitao.Introduction to wavelets and wavelet transforms.Prentice Hall,1998 被引量:1
  • 4[2]Mallat S.A wavelet tour signal processing.Academic Press,1997 被引量:1
  • 5[3]Meyer Y.Wavelets:algorithms and applications.SIAM,Translated and Revised by Ryan R.D.,1993 被引量:1
  • 6[4]Berman Z,Baras J S.Properties of the multiscale maxi-ma and zero-crossings representations.IEEE Trans.Sig-nal Proc.,1993;41(12):3216-3231 被引量:1
  • 7[5]Mallat S,Zhong S.Characterization of signals from multiscale edges.IEEE Trans.Patt.Recog.And Mach.Intel.,1992;14(7):710-732 被引量:1
  • 8Gong Y F,Phys Lett A,1999年,258卷,253页 被引量:1
  • 9Benzi R,Sutera A,Vulpiana A.The mechanism of stochastic resonance[J].J Phys A,1981,14 (11):453-457. 被引量:1
  • 10Gammaitoni L,Hanggi P,Jung P,et al.Stochastic resonance[J].Rev Mod Phys,1998,70(1):223-287. 被引量:1

共引文献152

同被引文献114

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部