期刊文献+

用于模式识别的极半径不变矩 被引量:16

Polar-Radius-Invariant-Moment for Pattern Recognition
下载PDF
导出
摘要 提出了用于目标物识别和分类的极半径不变矩 .对目标物进行分割后 ,先求出目标物的形心 ,进而求出极半径矩、归一化矩和归一化的中心矩 .在此基础上 ,给出了 5个具有平移、旋转和尺度变换不变性的特征量用于物体形状的识别 .文中给出了这些不变矩的特性 ,并给出了极半径不变矩和边界序列矩以及Hu提出的不变矩的实验比较结果 .该文提出的极半径不变矩 ,既可用于区域目标的识别 ,也可用于边界形状的识别 . A novel moment, called polar-radius-invariant-moment, is proposed for the object recognition and classification. Following the process of segmentation, we get binaried image. The centroid denoted by (x c ,y c ) of the object is calculated firstly. Then the polar radius r, that is, the distance from an arbitrary point of the object to the centroid,is computed.We define the p - order polar radius moment m p and central moment m c p as m p = ∫∫ Dr p ds, m c p = ∫∫ D(r- r- ) p ds, respectively. Normalized moment and normalized central moment are defined as m np =1A ∫∫ Dr r- p ds, m ncp = 1A ∫∫ Dr- r- r- p ds, respectively, where A is the area of the object and r- =1A ∫∫ Drds is the mean of r. The shifting, rotation and scaling invariance of the normalized moment m np and normalized central moment m ncp are proved theoretically. After that five derived invariant moments are employed as features in the recognition of objects. Examples are presented to illustrate the performance of these moments. In our experiments, we make use of the random movement of the pixels of the object to simulate the noise disturbance, and utilize the minimum distance rule to classify the shapes. In the comparing experiment of recognition of plane models, polar-radius-invariant-moments give a recognition rate of 100%, while that of contour sequence moments is 86% (p=0.3). When classifying a group of symmetric shapes, our approach arrives a rate of 91.4% whereas Hu’s moments reach a rate of 81.6%. These moments can be used for both the boundary shape recognition and the interior region shape recognition.
出处 《计算机学报》 EI CSCD 北大核心 2004年第6期860-864,共5页 Chinese Journal of Computers
基金 国家自然科学基金 ( 60 2 72 0 94) 山东省自然科学基金(Y2 0 0 1G10 )资助
关键词 模式识别 极半径不变矩 区域目标识别 边界序列矩 边界形状识别 polar-radius-invariant-moment image analysis shape recognition
  • 相关文献

参考文献21

  • 1Xia De-Shen,Fu De-Sheng ed.Modern Image Processing Technology and Its Application. Nanjing: Press of Dongnan University, 1997(in Chinese)(夏德深,傅德胜编著.现代图像处理技术与应用.南京:东南大学出版社,1997) 被引量:1
  • 2Cui Qi ed. Digital Image Processing Technology and Its Application. Beijing: Publishing House of Electronic Industry, 1997(in Chinese)(崔屹编著.数字图像处理技术与应用.北京:电子工业出版社,1997) 被引量:1
  • 3Castleman Kenneth R..Digital Image Processing. Prentice Hall,2000 被引量:1
  • 4Fang Ru-Ming, Cai Jian-Rong, Xu Li eds. Computer Image Processing Technology and Its Application in Agriculture. Beijing: Tsinghua University Press,1999(in Chinese)(方如明,蔡健荣,许俐编著.计算机图像处理技术及其在农业中的应用.北京: 清华大学出版社,1999) 被引量:1
  • 5Freeman H.. On the encoding of arbitrary geometric configurations. IEEE Transactions on Electronic Computers, 1961, 10(2): 260~268 被引量:1
  • 6Freeman H.. Boundary encoding and processing, in picture processing and psychohistories. In: Lipkin, Rosenfeld eds. New York: Academic Press, 1970, 241~306 被引量:1
  • 7Parodies T., Ali F.. Computer Recognition of handwritten numerals by polygonal approximations. IEEE Transactions on Systems, Man, Cyber, 1975, SMC-6: 610~614 被引量:1
  • 8Chun S.L., Chia H.L.. New forms of shape invariants from elliptic Fourier descriptors. Pattern Recognition, 1987, 20(5): 535~545 被引量:1
  • 9Kiryati N., Maydan D.. Calculating geometric properties from Fourier representations. Pattern Recognition, 1987, 22(5): 469~475 被引量:1
  • 10Kun Xu et al. Comparison of shape features for the classification of wear particles. Engineering Application Artificial Intellegence, 1997, 10(5): 485~493 被引量:1

同被引文献109

引证文献16

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部