期刊文献+

多体系统动力学Kane方法的改进 被引量:12

AN IMPROVED KANE'S METHOD FOR MULTIBODY DYNAMICS
下载PDF
导出
摘要 基于Kane方法,针对约束多体系统,建立了一种新型的自动组集系统动力学方程的方法.首先提出偏速度矩阵和偏角速度矩阵的概念,将各体对系统广义惯性力的贡献用简洁、统一的数学形式表达.然后引入各个运动学变量的递推关系以提高建模效率.最后对新型的Kane方程进行扩展,用于处理多体系统中的运动约束.该算法适用于任意多体系统,建立的动力学模型不含待定乘子,维数与系统广义速率相同,利于控制系统设计.对带有闭环约束的空间多机械臂系统的数值仿真验证了方法的正确性. This paper presents an improved Kane's method for automatically generating the equations of motion of arbitrary multibody systems. The notions of partial velocity matrix and partial angular velocity matrix are introduced. Each body's contribution to the system's generalized inertial force is expressed in a similar manner, which makes it amenable to computer solutions. All the kinematic quantities' recursive relations are developed to improve the modeling efficiency. The motion constraints are handled by the new form of Kane's equation. The final mathematical model is of the same dimensions with the generalized speeds and involves no Lagrange multipliers; therefore, it's useful for control system design. The simulation of a space platform with two manipulators is compared between the proposed method and recursive algorithm. The results validate the algorithm's accuracy.
出处 《力学学报》 EI CSCD 北大核心 2011年第5期968-972,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10872028)~~
关键词 约束 多体系统 动力学 KANE方程 motion constraints, multibody system, dynamics, Kane's equation
  • 相关文献

参考文献18

  • 1Rosenthal DE. An order n formulation for robotic systems. Journal of Astronautical Sciences, 1990, 38(4): 511-529. 被引量:1
  • 2Banerjee AK. Block-diagonal equations for multibody elastodynamics with geometric Stiffness and Constraints. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1092-1100. 被引量:1
  • 3Pradhan S, Modi V J, Misra AK. Order-N formulation for flexible multibody systems in tree topology: Lagrangian approach. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 665-672. 被引量:1
  • 4Banerjee AK, Lemak ME. Recursive algorithm with effi- cient variables for flexible multibody dynamics with mul- tiloop constraintsp. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 780-790. 被引量:1
  • 5Rosenthal DE, Sherman MA. High performance multibody simulations via symbolic equation manipulation and Kane's method. Journal of the Astronautical Sciences, 1986, 34(3): 223-239. 被引量:1
  • 6Richard M J, McPhee J J, Anderson RJ. Computerized generation of motion equations using variational graph- theoretic methods. Applied Mathematics and Computa- tion, 2007, 192(1): 135-156. 被引量:1
  • 7Kurz T, Eberhard P, Henninger C, et al. From Neweul to Neweul-M2: symbolical equations of motion for multibody system analysis and synthesis. Multibody System Dynam- ics, 2010, 24:25-41. 被引量:1
  • 8Orlandea N, Chace MA, Calahan DA. Sparsity-oriented ap- proach to the dynamics analysis and design of mechanical systems-- parts 1& 2. Journal of Engineering for Indus- try, 1977, 99(3): 773-784. 被引量:1
  • 9Singh RP, Vander Voort R J, Likins PW. Dynamics of flexi- ble bodies in tree topology: a computer-oriented approach. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 584-590. 被引量:1
  • 10黄文虎等著..多柔体系统动力学[M].北京:科学出版社,1996:228.

二级参考文献4

共引文献15

同被引文献124

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部