期刊文献+

一种改进的基于概率假设密度滤波的多目标跟踪方法 被引量:5

Improved probability hypothesis density(PHD) filter for multi-target tracking
原文传递
导出
摘要 针对概率假设密度(PHD)滤波使用聚类方法提取目标状态时,会出现结果不准确,且PHD滤波无法给出状态到航迹关联的问题,提出一种在目标状态中加入标签的方法来实现状态到航迹的关联.该方法对权值较大的标签,通过两次确认来剔除杂波干扰,得到比传统PHD滤波更精确的状态估计.在提取目标状态时,只对相同标签的粒子进行处理,避免使用聚类方法.通过与传统PHD算法的仿真对比表明,改进算法具有较好的跟踪性能. To investigate the problem of poor result when the probability hypothesis density(PHD) filter uses clustering technique to extract the target states and the PHD filter keeps no track association, an improved method of the PHD filter is proposed, which inserts a tracking label in the target state. The improved method confirms the label with biggish weight two times to eliminate the influence of clutter, which provides more exact target states than the standard PHD filter. In the states extract step, the improved method only deals with the particle with the same label to avoid using clustering technique. Simulations are presented to compare the performance of the improved method with that of the standard PHD filter. The results show the better tracking performance of the improved method.
出处 《控制与决策》 EI CSCD 北大核心 2011年第9期1367-1372,共6页 Control and Decision
关键词 随机有限集统计理论 多目标跟踪 概率假设密度滤波 粒子滤波 数据关联 finite set statistics theory multi-target tracking probability hypothesis density filter particle filter data association
  • 相关文献

参考文献10

  • 1Mahler R. Statistical multisource multitarget information fusion[M]. Norwood, MA: Artech House, 2007. 被引量:1
  • 2Mahler R. Multitarget Bayes filtering via first-order multitarget moment[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178. 被引量:1
  • 3Lin L, Bar-Shalom Y, Kirubarajan T. Track labeling and PHD filter for multitarget tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2006, 42(3): 778-795. 被引量:1
  • 4Panta K, Vo B-N, Singh S, et al. Probability hypothesis density filter versus multiple hypothesis tracking[C]. Proc of SPIE, Signal Processing, Sensor Fusion and Target Recognition ⅩⅢ. Bellingham, 2004, 5429: 284-295. 被引量:1
  • 5Panta K, Vo B, Singh S. Improved probability hypothesis (PHD) filter for multitarget tracking[C]. Proc of the Int Conf on Intelligent Sensing and Information Processing. Bangalore, 2005:213-218. 被引量:1
  • 6Ma W-K, Vo B-N, Singh S, et al. Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach[J]. IEEE Trans on Signal Processing, 2006, 9: 3291-3304. 被引量:1
  • 7Vo B-T, Vo B-N, Cantoni A. Bayesian filtering with random finite set observations[J]. IEEE Trans on Signal Processing, 2008, 56(4): 1313-1326. 被引量:1
  • 8Vo B-N, Singh S, Ma W-K. Tracking multiple speakers with random sets[C]. Proc of IEEE Int Conf on Acoust, Speech, Signal Process. Montreal, 2004, 2: 357-360. 被引量:1
  • 9Vo B-N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4): 1124-1245. 被引量:1
  • 10田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10

二级参考文献14

  • 1田淑荣,盖明久,何友.随机集的概率假设密度粒子滤波[J].海军航空工程学院学报,2006,21(4):455-458. 被引量:4
  • 2陈良洲,施文康.时间序列分析的随机集方法[J].上海交通大学学报,2005,39(3):400-404. 被引量:6
  • 3邓勇,朱振福,钟山.基于证据理论的模糊信息融合及其在目标识别中的应用[J].航空学报,2005,26(6):754-758. 被引量:63
  • 4[1]DEUTSCHER J,BLAKE A,REID I.Articulated motion capture by annealed particle filtering[C]//IEEE Conference on Computer Vision and Pattern Recognition,2000:126-133. 被引量:1
  • 5[2]SIDENBLADH H,WIRKANDER S L.Tracking random sets of vehicles in terrain[C]//IEEE Workshop on Multi-Object Tracking,2003. 被引量:1
  • 6[4]GOODMAN I,MAHLER R,NGUYEN H.Mathematics of Data Fusion[M].Kluwer Academic Publishers,1997. 被引量:1
  • 7[5]MAHLER R."Statistics 101" for multisensor,ultitarget data fusion[J].IEEE AES Mag.,Part 2:Tutorials,2004,19(1):53-64. 被引量:1
  • 8[6]MAHLER R.Multitarget filtering via first-order multitarget moments[J].IEEE Trans.AES,2003,39(4):1152-1178. 被引量:1
  • 9[9]BA-NGU VO.Sumeetpal Singh and Arnaud Doucet,Sequential Monte Carlo Implementation of the PHD Filter for Multi-target Tracking[C]//proc.Int'l Conf.On Information Fusion,Cairns,Australia,2003:792-799. 被引量:1
  • 10[10]TOBIAS M,LANTERMAN A D.A Probability Hypothesis Density-Based Multitarget Tracker Using Multiple Bistatic Range and Velocity Measurtments[C]//Proc.of the 36th Southeastern Symposium on System Theory,Atlanta,GA,March 2004:205-209. 被引量:1

共引文献9

同被引文献25

  • 1何友,修建娟,关欣.雷达数据处理及应用[M].3版.北京:电子工业出版社,2013:257-259. 被引量:15
  • 2David L H, James L. Handbook of multisensor data fusion [M]. 2nd ed. New York: CRC Press, 2008. 被引量:1
  • 3Vo B N, Singh S, Doueet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4) 1224 - 1245. 被引量:1
  • 4Vo B N, Ma W. The Gaussian mixture probability hypothesis density filter[J]. IEEE Trans. on Signal Processing, 2006, 54 (11): 4091-4104. 被引量:1
  • 5龙建乾.基于FISST理论的多目标跟踪技术研究[D].长沙:国防科学技术大学,2011. 被引量:1
  • 6Maroulas V, Panos S. Improved particle filters for multi-target tracking[J]. Journal of Computational Physics, 2012, 231 (2):602-611. 被引量:1
  • 7Ashraf M A. A new nearest-neighbor association approach based on fuzzy elustering[J]. Aerospace Science and Technology , 2013,26 (1):87 - 97. 被引量:1
  • 8Taek L S, Darko M. Smoothing innovations and data associa tion with IPDA[J]. Automatica, 2012, 48 (7):1324- 1329. 被引量:1
  • 9MAHLER R P S. Multitarget Bayes Filtering via First- Order Muhitarget Moments [ J ]. IEEE Transactions on Aerospace and Electronic Systems ,2003,39 ( 4 ) : 1152 - 1178. 被引量:1
  • 10VO B N, SONGH S, DOUCET A. Sequential Monte Carlo methods for Multi-Target Filtering with Random Finite Sets[ J]. IEEE Transactions on Aerospace and E- lectronic Systems, 2005,41 ( 4 ) : 1224 - 1245. 被引量:1

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部