期刊文献+

利用可能模糊聚类的鲁棒目标跟踪方法

Robust target tracking method based on possibility fuzzy clustering
下载PDF
导出
摘要 为了提高噪声情况下目标跟踪的准确度,提出一种基于直觉可能性模糊C均值聚类算法。首先,引入可能性模糊C聚类算法对含有噪声的目标进行聚类,得到分别以目标和观测为聚类中心的隶属度矩阵。其次,结合直觉模糊集得到直觉可能性模糊隶属度矩阵,对得到的隶属度矩阵根据最大隶属度原则求出目标和观测的正确关联对。最后,应用Kalman滤波更新目标轨迹,实现噪声情况下的目标跟踪。实验结果表明,在噪声环境下,改进算法目标跟踪的准确度和鲁棒性较好。 In order to improve the robustness of target tracking under noise,a fuzzy clustering algorithm based on intuitionistic possibility is proposed.Firstly,the possibility fuzzy clustering algorithm is introduced to cluster noisy targets to obtain membership matrices with targets and observations as clustering centers respectively.Then,the intuitionistic possibility fuzzy membership matrices are obtained by combining the intuitionistic fuzzy sets.The correct correlation pairs between targets and observations can be obtained by applying the principle of maximum membership to the obtained membership matrices.Finally,the Kalman filter is applied to update the trajectories in order to realize target tracking under the condition of noise.Experimental results show that the improved algorithm can effectively improve the accuracy and robustness of target tracking under noise conditions.
作者 蔡秀梅 王妍 吴成茂 卞静伟 CAI Xiumei;WANG Yan;WU Chengmao;BIAN Jingwei(School of Automation,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2020年第4期53-59,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省重点研究开发项目(2019GY-107)。
关键词 直觉模糊聚类 可能性模糊C均值聚类 卡尔曼滤波 目标跟踪 intuitionistic fuzzy clustering possibility fuzzy clustering Kalman filter target tracking
  • 相关文献

参考文献8

二级参考文献85

  • 1程婷,何子述.一种新的基于模糊聚类的多目标跟踪算法[J].系统工程与电子技术,2006,28(9):1332-1334. 被引量:4
  • 2BEZDEK J C. Pattern recognition with fuzzy objective function algo- rithms [ M]. New York: Plenum Press, 1951. 被引量:1
  • 3AZIZ A M, TUMMALA M, CRISTI R. Fuzzy logic data correlation approach in multisensor-multitarget tracking systems [ J]. Signal Processing, 1999, 76(2) : 195 -209. 被引量:1
  • 4OUSSALAH M, SCHUTTER J D. Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter [ J]. Information Sciences, 2002, 142 (1/4) : 195 -226. 被引量:1
  • 5ATANASSOV K. Intuitionistic fuzzy sets [ J]. Fuzzy Sets and Sys- tems, 1986, 20 (1): 87-96. 被引量:1
  • 6IAKOVIDIS D K, PELEKIS N, KOTSIFAKOS E, et al. Intuitionis- tic fuzzy clustering with applications in computer vision [ C ]// ACIVS 2008: Proceedings of the 10th International Conference on Advanced Concepts for Intelligent Vision Systems, LNCS 5259. Ber- lin: Springer, 2008:764-774. 被引量:1
  • 7Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981. 被引量:1
  • 8Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96. 被引量:1
  • 9Torra V, Miyamoto S, Endo Y, et al. On intuitionistic fuzzy clustering for its application to privacy[C]. Proc of the 2008 IEEE/FUZZ Int Conf on Fuzzy Systems. Hong Kong: IEEE Press, 2008: 1042-1048. 被引量:1
  • 10Iakovidis D K, Pelekis N, Kotsifakos E, et al. Intuitionistic fuzzy clustering with applications in computer vision[J]. Lecture Notes in Computer Science, 2008, 5259(1): 764- 774. 被引量:1

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部