期刊文献+

一种新的基于单目视觉的广义障碍物检测方法 被引量:11

A New Method for Generalized Obstacle Detection Based on Monocular Vision
下载PDF
导出
摘要 障碍物检测是辅助驾驶、机器人导航等领域的核心问题之一.本文提出一种新的基于特征点道路面投影位移矢量的单目视觉广义障碍物检测方法.基于道路平面假设,利用特征点估计相机自运动参数,并利用此参数对相机的旋转运动进行补偿.利用逆透视投影变换,分别推导并证明了道路平面上的点和障碍物上的点的道路面投影位移矢量与相机位移矢量的关系.提出了一种区间统计方法,实现了相机位移矢量的鲁棒估计.最后,通过分析连续图像特征点的道路面投影位移矢量与相机位移矢量的关系,实现了广义障碍物检测.各种场景下的实验结果表明,该方法能够检测任意类型、形状的障碍物.与传统的运动补偿方法相比,具有更好的鲁棒性和准确性. Obstacle detection is one of the key problems in driver assistance and robot navigation,etc.A monocular generalized obstacle detection method based on ground projection displacement vectors of feature points is proposed.The motion parameters of camera are estimated by feature points under the ground plane assumption and the rotation of camera is compensated by these parameters.The relationship between displacement vectors of camera and ground projection displacement vectors of both ground points and obstacle points are deduced by IPM(Inverse Perspective Mapping) respectively.An interval statistical method is proposed and the displacement vectors of camera are robustly estimated by this method.The generalized obstacle is detected by analyzing the relationship between ground projection displacement vectors of feature point pairs in image sequence and displacement vectors of camera.The experimental results under various scenes illustrate that the method can detect obstacle in arbitrary type and shape.Comparing with traditional obstacle detection method based on motion compensation,this method is more robust and accurate.
机构地区 东北大学研究院
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1793-1799,共7页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2009AA011908)
关键词 广义障碍物检测 逆透视投影变换 位移矢量 区间统计 单目视觉 generalized obstacle detection inverse perspective mapping displacement vector interval statistical monocular vision
  • 相关文献

参考文献19

  • 1Haselhoff A, Kummert A, Davis. A vehicle detection system based on Haar and triangle features[ A]. IEEE Intelligent Vehicles Symposium[ C]. Xi' an: IEEE, 2009.261 - 266. 被引量:1
  • 2Margfit B, Esin H, Larry S. Real-lime multiple vehicle detection and tracking from a moving vehicle[J].Machine Vision and Applications, 2000,12 (2) : 69 - 83. 被引量:1
  • 3Sun Z, Bebis G, Ronald M. Monocular pre-crash vehicle detection features[ J]. IEEE Transactions on Image processing, 2006, 15(7) :2019- 2033. 被引量:1
  • 4许言午,曹先彬,乔红.行人检测系统研究新进展及关键技术展望[J].电子学报,2008,36(5):962-968. 被引量:36
  • 5Ludwig O, Delgado D, Goncalves V, Nunes U. Trainable classi- tier-fusion schemes: An application to pedestrian detection [A ]. IEEE Conference on Intelligent Transportation Systems [C]. St. Louis, MO: IEEE,2009.1 - 6. 被引量:1
  • 6Lin Z,Davis L. Shape-based human detection and segmentation via hierarchical part-template matching[ J]. Pattern Analysis and Machine Intelligence, 2010,32(4) :604 - 618. 被引量:1
  • 7田广,戚飞虎.移动摄像机环境下基于特征变换和SVM的分级行人检测算法[J].电子学报,2008,36(5):1024-1028. 被引量:18
  • 8Qifa Ke, Takeo Kanade. Transforming camera geometry to a virtual downward-looking camera robust ego-motion estimation and ground-layer detection[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 1 (1):390-397. 被引量:1
  • 9Boyoon Jung, Gaurav S. Sukhatme. Detecting moving objects using a single camera on a mobile robot in an outdoor environment[A]. The 8th Conference on Intelligent Autonomous Sys- tems[C]. Amsterdam, Netherlands: IEEE, 2004.980 - 987. 被引量:1
  • 10Wybo S,Bendahan R,Bougnoux S, Vestri C,Abad F , Kakinami T. Movement detection for safer backward maneuver [ A ]. 13th World Congress on Intelligent Transport Systems [C]. Tokyo: IF.EE, 2006.453 - 459. 被引量:1

二级参考文献72

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4SasaG Loncaric S.Spatio-temporal image segmentation using optical flow and clustering algorithm [A]..First Int′l Workshop on Image and Signal Processing and Analysis [C].Pula,Croatia,2000.63-68. 被引量:1
  • 5Hom B K P, Schunck B G.Determinig optical, flow [ J]. Artificial Intelligence, 1981,17:185 - 203. 被引量:1
  • 6Bruss A R, Horn B K P. Passive navigation [ J ]. Computer Vision,Graphica, and Image Processing, 1983,21:3- 20. 被引量:1
  • 7Thompson W B, Pong T C, Detecting moving object [J], Int J Comp Vision, 1990,4:39 - 57. 被引量:1
  • 8Sasa G, Loncaric S. Spatio-temporal image segmentation using optical flow and clustering algorithm [A],First Int'l Workshop on Image and Signal Processing and Analysis [C]. Pula,Groatia,2000.63-68. 被引量:1
  • 9Smith S M, Brady J M, ASSET-2:Real-Time Motion Segmentation and shape Tracking [J]. IEEE Trans, 1995,PAMI-8(17) :814 - 820. 被引量:1
  • 10Adiv G, Determining three-dimensional motion and structure from optical flow generated by several moving objects [J], IEEE. Trans, 1985,PAMI-7(4) :384 - 401. 被引量:1

共引文献103

同被引文献115

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部