期刊文献+

挖掘RFID数据库中多维频繁路径的研究 被引量:2

Research on mining multi-dimensional frequent paths in RFID databases
下载PDF
导出
摘要 针对应用于物流和供应链管理的射频识别(RFID)系统产生的海量路径数据集中的多维频繁路径挖掘的问题进行了深入的研究,提出了Dim-path与Path-dim两种不同的顺序处理非路径维数据和路径数据的多维频繁路径挖掘算法。这两种算法根据RFID路径数据自身的特点,将RFID数据划分为非路径维数据、位置数据、停留时间数据,将多维路径挖掘问题分解为多维模式分析与序列模式挖掘问题处理,来提高算法的效率。买验结果与算法分析都表明,Dim-path算法与Path-dim算法能够有效快速地挖掘多维频繁路径。 The paper studies deeply the problem of mining the multi-dimensional frequent paths from the gigantic path data set created by a radio frequency identification (RFID) system applied to supply chain management, and proposes the Dim-path algorithm and the Path-dim algorithm, two methods for mining closed multi-dimensional frequent paths in RFID databases. Base on the characteristics of RFID data, the two methods divide RFID data into three parts of the path independent dimensions, the location data, and the duration data, and mine these parts with multi-dimensional analysis and sequential data mining to improve the efficiency of the methods. The experimental and analytical results show that the algorithms of Dim-path and Path-dim can rapidly and efficiently mine the multi-dimensional frequent path.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第8期803-809,共7页 Chinese High Technology Letters
基金 国家自然科学基金(61070047,61070133)和江苏省自然科学基金(BK2009697)资助项目.
关键词 射频识别(RFID) 多维模式分析 序列模式挖掘 投影数据库 radio frequency identification (RFID) multi-dimensional analysis sequential data mining projected database
  • 相关文献

参考文献12

  • 1李战怀 聂艳明 陈群 等.RFID数据管理的研究进展.中国计算机学会通讯,2007,8(8):50-58. 被引量:12
  • 2Ye J, Wang Z, Pan X. Research on production procedure real-time supervisory control technique in RFID-based circumstance. Journal of Advanced Manufacturing Systems,2008, 7 ( 1 ) : 81-84. 被引量:1
  • 3Bottani E, Rizzi A. Economical assessment of the impact of RFID technology and EPC system on the fast-moving consumer goods supply chain. International Journal of Production Economics, 2008, 112(2) : 548-569. 被引量:1
  • 4Derakhshan R, Orlowska M, Li X. RFID data management: challenges and opportunities. In: Proceedings of IEEE 1st International Conference on RFID. Los Alamitos, USA, 2007. 175-182. 被引量:1
  • 5Gonzalez H, Han J, Li X, et al. Warehousing and analyzing massive RFID data sets. In: Proceedings of 2006 International Conference on Data Engineering. Los Alamitos, USA, 2006. 83-92. 被引量:1
  • 6Gonzalez H, Han J, Li X. Flowcube: constructing RFID flowcubes for multi-dimensional analysis of commodity flows. In: Proceedings of the 2006 International Conference on Very Large Data Bases. San Fransisco, USA, 2006. 834-845. 被引量:1
  • 7Pinto H, Han J, Pei J, et al. Multi-dimensional sequential pattern mining. In: Proceedings of the 2001 International Conference on Information and Knowledge Management. New York, USA, 2001. 81-88. 被引量:1
  • 8陈竹西,杨俊,胡孔法,陈崚,宋爱波.射频识别数据库中封闭多维路径挖掘[J].计算机集成制造系统,2009,15(10):2050-2056. 被引量:1
  • 9陈竹西,胡孔法,陈崚,宋爱波.现代物流系统中的频繁封闭路径挖掘算法[J].计算机集成制造系统,2009,15(4):809-816. 被引量:12
  • 10Beyer K, Ramakrishnan R. Bottom-up computation of sparse and iceberg cubes. In: Proceedings of 1999 International Conference on ACM SIGMOD Management of Data. New York, USA, 1999. 359-370. 被引量:1

二级参考文献21

  • 1CHAWATHE S S, KRISHNAMURTHY V, RAMACHAND- TAN S, et at. Managing RFID data[C]//Proceedings of the 30th International Conference on Very Large Data Bases. San Francisco, Cal., USA:Morgan Kaufmann, 2004:1189 -1195. 被引量:1
  • 2科技部,信息产业部.中国射频识别(RFID)技术政策白皮书[EB/OL].(2006-06-11)[2007-11-22].http;//www.eetchina.com/ARTICI.ES/2006JUN/PDF/CHINARFIDWHITEPAPER.PDF.] 被引量:1
  • 3GONZALEZ H, HAN J, LI X, et al. Warehousing and analyzing massive RFID data sets[C]// Proceedings of 2006 International Conference on Data Engineering. Los Alamitos, Cal. , USA: IEEE Computer Society Press, 2006 : 83-92. 被引量:1
  • 4GONZALEZ H, HAN J, LI X. FlowCube..constructing RFID flowcubes for multi-dimensional analysis of commodity flows [C]// Proceedings of 2006 International Conference on Very Large Data Bases. San Francisco, Cal. , USA:Morgan Kaufmann, 2006 : 834-845. 被引量:1
  • 5WANG J, HAN J. BIDE:Efficient mining of frequent closed sequences[C]//Proceedings of 2004 International Conference on Data Engineering. Los Alamitos, Cal. , USA: IEEE Compurer Society Press, 2004 : 79-90. 被引量:1
  • 6PEI J, HAN J, MORTAZAVI -ASL B, et al. PreflxSpan:mining sequential patterns efficiently by prefix-projected pattern growth [C]//Proceedings of 2001 International Conference on Data Engineering. Los Alamitos, Cal., USA: IEEE Computer Society Press, 2001:215-224. 被引量:1
  • 7GRAY J,BOSWORTH A, LAYMAN A, et al. Data cube:a relational aggregation operator generalizing group-by, crosstab, and sub-totals[C]//Proceedings of 1996 International Conference on Data Engineering. Los Alamitos, Cal. , USA: IEEE Computer Society Press, 1996:152-159. 被引量:1
  • 8BEYER K, RAMAKRISHNAN R. Bottom-up computation of sparse and iceberg cubes[C]//Proceedings of 1999 International Conference Management of Data. New York, N. Y. ,USA: ACM Press, 1999:359-370. 被引量:1
  • 9CHAWATHE S S, KRISHNAMURTHY V, RAMACHANDTAN S, et al. Managing RFID data[C]//Proceedings of the 30th International Conference on VLDB. San Francisco, Cal. , USA : Morgan Kaufmann, 2004 : 1189-1195. 被引量:1
  • 10WANG F, LIU P. Temporal management of RFID data[C]//Proceedings of the 31st International Conference on VLDB. San Francisco, Cal. , USA: Morgan Kaufmann,2005 : 1128-1139. 被引量:1

共引文献21

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部