期刊文献+

基于有限体积格式的自适应笛卡尔网格虚拟单元方法及其应用 被引量:6

A ghost cell method on finite volume adaptive Cartesian grids and its applications
下载PDF
导出
摘要 基于自适应笛卡尔网格,结合虚拟单元方法处理浸入边界,发展了一种有限体积格式实现模式,数值模拟了二维无粘可压缩流动。本文发展的方法相对于传统的有限差分方法具有执行效率快,易于获得守恒性等优点。最后,利用一些标准算例和多物体流场的计算问题验证了算法的有效性。 A finite volume scheme with the ghost cell method based on adaptive Cartesian grids is presented for two dimensional compressible flow problems.The implementation procedure shows that the present method is more efficient and easier conservation preserving than finite difference schemes.Finally,some numerical examples and multi-body flow problems are given to illustrate the efficient of the method.
出处 《空气动力学学报》 EI CSCD 北大核心 2011年第4期491-495,共5页 Acta Aerodynamica Sinica
基金 国家自然科学基金项目资助(10728206)和(10972106)
关键词 虚拟单元方法 自适应笛卡尔网格 有限体积格式 多物体 欧拉方程 ghost cell method adaptive Cartesian grids finite volume scheme multi-body Euler equations
  • 相关文献

参考文献18

  • 1CHARLTON E F. An otree solution to conservation-laws over arbitrary regions(OSCAE) with applications to aircraft aero- dynamics[ D]. [Ph. D. Thesis]. University of Michigan, 1997. 被引量:1
  • 2UDAYKUMAR H S. Muhiphase dynamics in arbitrary geom- etries on fixed cartesian grids [ J ]. Journal of Computational Physics, 1997,137 : 366 -405. 被引量:1
  • 3MARSHALL D D. Extending the functionalities of cartesian grid solvers: viscous effects modeling and MPI parallelization[ D ]. Ph. D. Thesis, Georgia Institute of Technology,2002. 被引量:1
  • 4DADONE A and GBOSSMAN B. An immersed body method- ology for inviscid flows on cartesian grids[R]. AIAA Paper, 2002 - 1059,2002. 被引量:1
  • 5FORRER H, JELTSCH R. A higher order boundary treat- ment for cartesian-grid method [ J ]. Journal of Computational Physics, 1998,140 (2) : 259 - 277. 被引量:1
  • 6DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations [ R]. AIAA 93 -3334. 1993. 被引量:1
  • 7DADONE A. Symmetry technique for the numerical solution of the 2d Euler equations at impermeable boundaries [ J ]. Int. J. Numer. Meth. Fluids., 1998,28(7):1093-1108. 被引量:1
  • 8DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations in three di- mensions [J]. Lect. Notes. Phys., 1995,453:188-94. 被引量:1
  • 9DADONE A, GROSSMAN B. Ghost-cell method for inviscid two-dimensional flows on cartesian grids [ J ]. AIAA JOUR- NAL, 2004,42 ( 12 ) : 2499 - 2507. 被引量:1
  • 10DADONE A, GROSSMAN B. Ghost-cell method with far field coarsening and mesh adaptation for Cartesian grids [J]. Computers & Fluids 2006,35(7) :676 -687. 被引量:1

同被引文献65

  • 1陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展(A辑),2005,20(z1):829-835. 被引量:23
  • 2LIANG Qiu-hua, BORTHWICK A G L. Adaptive quad- tree simulation of shallow flows with wet-dry fronts over complex topography[J]. Computers and Fluids, 2009, 38(2): 221-234. 被引量:1
  • 3ZHOU J G., CAUSON D M, MINGHAM C G., et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1 ): 1-25. 被引量:1
  • 4SONG Li-ziang, ZHOU Jiang-zhong, LI Qing-qing, et al. An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography[J]. International Journal for Numerical Methods in Fluids, 2011, 67(8): 960-980. 被引量:1
  • 5LIANG Q, BORTHWICK A G L, STELLING G. Simu- lation of dam- and dyke-break hydrodynamics on dyna- mically adaptive quadtree grids[J]. International Journal for Numerical Methods in Fluids, 2004, 46(2): 127-162. 被引量:1
  • 6ROGERS B, FUJIHARA M, BORTHWICK A G L. Adaptive Q-tree Godunov-type scheme for shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2001, 35(3): 247-280. 被引量:1
  • 7BORTHWICK A G L, CRUZLEON S, JOZSA J. Ada- ptive quadtree model of shallow-flow hydrodynamics[J]. Journal of Hydraulic Research, 2001, 39(4): 413-424. 被引量:1
  • 8LIANG Qiu-hua. A structured but non-uniform Cartesian grid-based model for the shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2011, 66(5): 537-554. 被引量:1
  • 9LIANG Qiu-hua, MARCHE F. Numerical resolution of well-balanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884. 被引量:1
  • 10CROSSLEY A J, WRIGHT N G. Time accurate local time stepping for the unsteady shallow water equa- tions[J]. International Journal for Numerical Methods in Fluids, 2005, 48(7): 775-799. 被引量:1

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部