期刊文献+

具有三时滞Lotka-Volterra互惠系统的Hopf分支(英文) 被引量:1

Hopf Bifurcation for Lotka-Volterra Mutualist Systems with Three Delays
原文传递
导出
摘要 建立了具有三个时滞的Lotka-Volterra互惠系统;获得了正平衡点和Hopf分支存在的条件等;并对所获得的结果进行了数值模拟. A Lotka-Volterra cooperative model with three delays is introduced. By analyzing the distribution of the roots of the characteristic equation, we get the conditions of the positive equilibrium and the existence of Hopf bifurcations. Further, the explicit formulas which point out the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by using the the normal theory and center manifold argument. Finally, numerical simulations are given to illustrate the mathematical results.
机构地区 运城学院
出处 《生物数学学报》 CSCD 北大核心 2011年第2期223-233,共11页 Journal of Biomathematics
基金 supported by the National Sciences Foundation of China(1 1071283) the Sciences Foundation of Shanxi(2009011005-3) the Major Subject Foundation of Shanxi
关键词 互惠系统 时滞 HOPF分支 稳定性 Mutualist system Delay Hopf bifurcation Stability
  • 相关文献

参考文献2

二级参考文献15

  • 1Rai B, Freedman H I, Addicott J F . Analysis of three species model of mutualist in predator-prey and competitive systems[J]. Math Boisci, 1983, 65(1):13-50. 被引量:1
  • 2Zheng S. A reaction-diffusion system of a competitor-competitor-mutualist model[J]. J Math Anal Appl, 1987, 124(1):254-280. 被引量:1
  • 3Chen W, Peng R. Stationary patterns created by cross-diffusion for the competitor- competitor- mutualist model[J]. J Math Anal Appl, 2004, 291(2):550-564. 被引量:1
  • 4Choi Y S, Lui R, Yamada Y. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion [J]. Discrete Contin Dynam Systems, 2004, 10(3):719-730. 被引量:1
  • 5Seong-A Shim. Uniform boundedness and convergence of solusions to cross-diffusion[J]. J Diff Eqs, 2002, 185(1):281-305. 被引量:1
  • 6Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: Plenum Press, 1992. 被引量:1
  • 7Amann H. Dynamic theory of quasilinear parabolic equations-Ⅰ. Abstract evolution equations [J]. Nonlinear Analysis, 1988, 12(9): 859-919. 被引量:1
  • 8Amann H. Dynamic theory of quasilinear parabolic equations-Ⅱ. Reaction-diffusion [J]. Diff Int Eqs, 1990, 3(1):13-75. 被引量:1
  • 9Amann H. Dynamic theory of quasilinear parabolic equations-Ⅲ. Global existence [J]. Math Z, 1989, 202(2):219-250. 被引量:1
  • 10Ladyzenskaja O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type[M]. Translations of Mathematical Monographs, AMS, 1968, 23. 被引量:1

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部