期刊文献+

捕食者-食饵交错扩散模型的整体解 被引量:1

On Global Solutions for Predator-Prey Model with Cross-Diffusion
原文传递
导出
摘要 应用能量估计方法和Bootstrap技巧证明含有两类竞争的食饵种群和一类捕食者种群的三种群捕食者-食饵扩散模型在空间维数小于6时古典解的整体存在性. Using the energy estimates and bootstrap arguments,the global existence of classical solutions for two competing preys and one predator system with cross-diffusion is proved when the space dimensions is less than 6.
作者 张睿 陈梅艳
出处 《生物数学学报》 CSCD 北大核心 2009年第4期665-673,共9页 Journal of Biomathematics
基金 甘肃省教育厅科研项目(0704-14)
关键词 捕食者-食饵模型 交错扩散 整体解 Predator-prey model Cross-diffusion global solutions Convergence
  • 相关文献

参考文献18

  • 1Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species[J]. Journal of Theoretical Biology, 1979, 79(1): 83-89. 被引量:1
  • 2Dubey B, Hussain B. A predator-prey interaction model with self and cross-diffusion[J]. Ecological Modelling, 2001, 141: 67-76. 被引量:1
  • 3Gakkhar S, Singh B. The dynamics of a food web consisting of two preys and a harvesting predator[J]. Chaos, Solitons and Fractals,2007, 34: 1346-1356. 被引量:1
  • 4Zhang R, Chen M, Liu J. Stability Analysis for Two Competing Preys and One Predator System with Diffusion[C]. Proceedings of the 6th Conference of Biomathematics, 2008,25-28: 462-470. 被引量:1
  • 5Chen L, Jungel A. Analysis of a multi-dimensional parabolic population model with strong cross-diffusion[J]. SIAM Journal of Mathematical Analysis,2004, 36(2): 301-322. 被引量:1
  • 6Barrett J, Blowey J. Finite element approximation of a nonlinaer cross-diffusion population model[J]. Numerische Mathematik,2004, 98(2): 195-221. 被引量:1
  • 7Choi Y S, Lui R, Yamada Y. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion[J]. Discrete Continuous Dynamics Systems, 2004, 10: 719-730. 被引量:1
  • 8Tuoc P V. On gtobal existence of solutions to a cross-diffusion system[JI. Journal of Mathematical Analysis and Applications, 2008, 343(2): 826-834. 被引量:1
  • 9Amann H. Dynamic theory of quasilinear parabolic equations-I: Abstract evolution equations[J]. Nonlinear Analysis: TMA,1988, 12: 859-919. 被引量:1
  • 10Amann H. Dynamic theory of quasilinear parabolic equations-II: Reaction-diffusion[J]. Differential Integral Equations,1990, 3: 13-75. 被引量:1

二级参考文献25

  • 1Arino O.,Montero J.A.Optirnal control of a nonlinear elliptic population system[J].Proc.Edinburgh Math.Soc 2000,43(2):225-241. 被引量:1
  • 2Canada A.,Magal P.Montero J.A.Optimal control of harvesting in a nonlinear elliptic system arisng from population dynamics[J].Jour.Math.Anal.and Applications,2001,254(2):571-586. 被引量:1
  • 3Molina-meyer M.Existence and uniqueness of coexistence states for some nonlinear elliptic systems[J].Nonlinear Anal.TMA,1995,25(3):279-296. 被引量:1
  • 4Molina-meyer M.Global attractivity and singular perturbation for a class of nonlinear cooperative systems[J].J Differential Equation,1996,128(2):347-378. 被引量:1
  • 5López-gómez J.,Molina-meyer M.The maximum principle for co-operative weakly coupled elliptic systems and some applications[J].Differential and Integral Equations,1994,7(2):383-398. 被引量:1
  • 6Sweers G.Strong positivity in C(-Ω)for elliptic systems[J].Math.Zeit.,1992,209(2):251-271. 被引量:1
  • 7Pao C.V.Nonlinear parabolic and elliptic equations[M].New York,Plenum Press,1992. 被引量:1
  • 8Allegretto w.Sturmian theorems for second order systems[J].Proc.Amer.Math.Soc.,1985,94(2):291-296. 被引量:1
  • 9Cantrell R.S.,Schmidt,K.On the eigenvalue problems for coupled elliptic systems[J].SIAM J.Math.Anal.,1986,17(4):850-862. 被引量:1
  • 10Henry D.Geometric theory of semilinear parabolic equations[M].Lecture Notes in Mathematics 840,Berlin/New York,springer-Verlag,1981. 被引量:1

共引文献8

同被引文献30

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部