期刊文献+

一种基于环切割的约束满足问题求解算法 被引量:7

An Approach of Solving Constraint Satisfaction Problem Based on Cycle-Cut
下载PDF
导出
摘要 该文首先给出一种无环约束满足问题的无回溯搜索算法Tree_Search,然后将环切割思想嵌入到目前最流行的MAC3 rm算法中,给出一种新算法CCS.CCS将原回溯搜索过程分为两部分:第1部分通过回溯搜索求解环切割集中变量,将原问题化简成一个满足弧相容的无环问题;第2部分通过无回溯的Tree_Search算法求解化简后的无环问题,改进了MAC3rm算法.证明了MAC3rm算法在环切割集上求得的局部解一定可以扩展为一个全局解,并且如果原问题无解,则MAC3rm算法在环切割集上找不到局部解.实验结果显示,CCS的效率在大多数情况下高于MAC3rm.在求解随机问题相变阶段的测试用例时,CCS的效率最高可以达到MAC3rm的140倍.Benchmark中几组问题的测试结果显示,CCS在整体上效率高于MAC,最高可以达到MAC3rm的100倍以上. Firstly a backtrack-free algorithm Tree_Search is given to solve the cycle-free CSPs. Secondly, by embedding the cycle-cut idea in the MAC3rm algorithm which is the most popular solver for binary CSPs in recent years, the new algorithm, called CCS, is presented. CCS sepa- rates the backtracking procedure into two steps, the former step searches the partial solution for the variables in the cycle-cut set and simplifies the problem into a cycle-free problem that is arc consistency, and the latter step solves the rest variables by Tree_Search algorithm. As a result, CCS has improved MAC3rm. It is proved that the partial solution which is found by MAC3rm can be extended to a global solution and MAC3rm can not find a partial solution on the cycle_cut set if the global solution does not exist. The experiments show that CCS is more efficient than MAC3rm. While solving the random CSPs which are at the phase transition, CCS can reach a maximum of 140 times more efficient than MAC3rm, and while solving some of the benchmarks, CCS can reach up to 100 times more efficient than MAC3rm.
出处 《计算机学报》 EI CSCD 北大核心 2011年第8期1528-1535,共8页 Chinese Journal of Computers
基金 国家自然科学基金(60773097 60873148 60973089) 吉林省自然科学资金项目(20060532 20071106 20080107)资助
关键词 弧相容 无回溯搜索 环切割 MAC3rm arc consistency backtrack free search cycle cut MAC3rm
  • 相关文献

参考文献24

  • 1Freuder E C, Mackworth A K. Constraint satisfaction: An emerging paradigm//Rossi F, van Beek P, Walsh T. Handbook of Constraint Programming. Amsterdam: Elservier, 2006:13-23. 被引量:1
  • 2van Beek P. Backtracking search algorithms//Rossi F, van Beek P, Walsh T. Handbook of Constraint Programming. Amsterdam: Elservier, 2006:86-118. 被引量:1
  • 3Bessiere C. Constraint propagation//Rossi F, van Beek P, Walsh T. Handbook of Constraint Programming. Amsterdam: Elservier, 2006:29-83. 被引量:1
  • 4Haralick R M, Elliott G L. Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 1980, 14(3):263-313. 被引量:1
  • 5Sabin D, Freuder E C. Contradicting conventional wisdom in constraint satisfaction//Cohn A G. Proceedings of the 11th European Conference on Artificial Intelligence. Amsterdam: John Wiley and Sons, 1994:125-129. 被引量:1
  • 6Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 1977, 8(1): 99-118. 被引量:1
  • 7Mohr R, Henderson T C. Arc and path consistency revised. Artificial Intelligence, 1986, 28(1): 225-233. 被引量:1
  • 8Bessi-re C. Arc-consistency and arc-consistency again. Artificial Intelligence, 1994, 65(1): 179-190. 被引量:1
  • 9Bessiere C, Freuder E C, Regin J C. Using constraint meta knowledge to reduce arc consistency computation. Artificial Intelligence, 1999, 107(1): 125-148. 被引量:1
  • 10Bessiere J C, Regin J C, Yap R H C, Zhang Y. An optimal coarse-grained arc consistency algorithm. Artificial Intelligence, 2005, 165(2): 165-185. 被引量:1

二级参考文献20

  • 1Gent Ian P, Macintyre Ewan, Prosser Patrick, Smith Barbara M, Walsh Toby. Random constraint satisfaction flaws and structure. Journal of Constraints, 2001, 6(4) : 345- 372. 被引量:1
  • 2Xu Ke, Li Wei. Exact phase transitions in random constraint satisfaction problems. Journal of Artificial Intelligence Research, 2000, 12: 93-103. 被引量:1
  • 3Xu Ke, Boussemart Frederic, Hemery Fred, Lecoutre Christophe. A simple model to generate hard satisfiable instances//Proceedings of the IJCAI. Edinburgh, Scotland,2005. 337-342. 被引量:1
  • 4Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003. 被引量:1
  • 5Patrick Prosser. Hybrid algorithms for the constraint satisfaction problems. Computational Intelligence, 1993, 9 (3) : 268- 299. 被引量:1
  • 6Ginsberg M L. Dynamic backtracking. Artificial Intelligence, 1993, 1: 25-46. 被引量:1
  • 7Sabin Daniel, Freuder E C. Contradicting conventional wis dom in constraint satisfaction//Borning Alan. Proceedings of the 2nd International Workshop on Principles and Practice of Constraint Programming. USA, 1994: 10-20. 被引量:1
  • 8Mackworth A K. Consistency in networks of relations. Artificial Intelligence, 1977, 8(1): 99-118. 被引量:1
  • 9Mohr R, Henderson T C. Arc and path consistency revised. Artificial Intelligence, 1986, 28(2): 225 -233. 被引量:1
  • 10Bessiere Christian, Régin Jean Charles. Refining the basic constraint propagation algorithm//Proeeedings of the 17th International Joint Conference on Artificial Intelligence. Seattle WA, Morgan Kaufmann, 2001:309-315. 被引量:1

共引文献10

同被引文献96

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部