期刊文献+

基于比例风险模型的可靠性灵敏度分析 被引量:3

A Proportional Risk Model-Based Reliability Sensitivity Analysis
下载PDF
导出
摘要 为了定量描述产品可靠性随环境因素的动态变化,研究了环境因素对可靠性的影响,提出了一种基于比例风险模型的可靠性灵敏度分析方法。首先利用比例风险模型描述产品可靠性水平与环境因素的定量影响关系。结合试验数据选取基准环境协变量,对比例风险模型进行变换,并利用广义线性模型给出了可靠性模型参数的极大似然估计。进而给出了产品关于不同环境因素的可靠性灵敏度,用于度量可靠性对环境因素的灵敏性。结合实例表明该方法综合利用了不同环境条件下的试验数据,提高了可靠性灵敏度分析精度,可用于分析产品可靠性关于环境因素的动态变化特征。 To describe the dynamic influence of environment factors on the reliability,a method for reliability sensitivity analysis based on proportional risk model(PRM) is proposed by means of the varied environment test data.In this method,a PRM is introduced to relate the reliability to environment factors.According to the test data analysis or experience,one of the environment conditions is chosen as the baseline environment covariant and the PRM is transformed.Treating the indicator as Poisson distribution,the log-likelihood function is transformed into be a generalized linear expression of Poisson variable.By using the generalized linear model for Poisson distribution,the maximum likelihood estimations of the model coefficients are obtained.Thus the influences of environment factors on the reliability of the product are measured quantificationally.With the reliability model,the reliability sensitivity is obtained.The instance analysis shows that the method can be used to analyze the dynamic varying character of reliability with environment factors and is straightforward for engineering application.
出处 《宇航学报》 EI CAS CSCD 北大核心 2011年第8期1865-1870,共6页 Journal of Astronautics
关键词 可靠性 灵敏度分析 环境因素 比例风险模型 广义线性模型 Reliability Sensitivity analysis Environment factor Proportional risk model(PRM) Generalized linear model
  • 相关文献

参考文献2

二级参考文献10

共引文献12

同被引文献27

  • 1周源泉,翁朝曦,叶喜涛.论加速系数与失效机理不变的条件(Ⅰ)─—寿命型随机变量的情况[J].系统工程与电子技术,1996,18(1):55-67. 被引量:60
  • 2Gebraeel N, Pan J. Prognostic degradation models for computing and updating residual life distributions in a time-varying environment[J], IEEE Transactions on Reliability, 2008,57(4):539-550. 被引量:1
  • 3Bian L, Gebraeel N. Stochastic methodology for prognostics under continuously varying environment profiles[J].Statistical Analysis and Data Mining, 2013, 6(3):260-270. 被引量:1
  • 4Bian L, Gebraeel N, Kharoufeh J P. Degradation modeling for real-time estimation of residual lifetimes in dynamic environments[J].IIE Transactions, 2015, 47(5):471-486. 被引量:1
  • 5Jin G, Matthews D, Fan Y, et al. Physics of failure-based degradation modeling and lifetime prediction of the momentum wheel in a dynamic covariate environment[J].Engineering Failure Analysis, 2013, 28(3): 222-240. 被引量:1
  • 6Liao H, Tian Z. A framework for predicting the remaining useful life of a single unit under time-varying operating conditions[J].IIE Transactions, 2013, 45(9):964-980. 被引量:1
  • 7Escobar L A, Meeker W Q. A review of accelerated test models[J].Statistical Science, 2006,21(4):552-577. 被引量:1
  • 8Park C, Padgett W J. Stochastic degradation models with several accelerating variables[J].IEEE Transactions on Reliability, 2006,55(2):379-390. 被引量:1
  • 9Efron B. Better bootstrap confidence intervals[J].Journal of American Statistical Association, 1987,82(397):171-185. 被引量:1
  • 10Marks C E, Glen A G, Robinson M W, et al. Applying bootstrap methods to system reliability[J].The American Statistician, 2014,68(3):174-180. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部