期刊文献+

基于灰色RBF组合模型的城市用水量预测 被引量:2

Prediction of urban water consumption based on grey-RBF combination model
下载PDF
导出
摘要 为解决城市用水量预测中单一方法预测精度不高的问题,建立了灰色径向基(RBF)神经网络组合模型。对比实验结果表明,灰色GM(1,1)模型、RBF神经网络模型和灰色RBF神经网络组合模型的平均相对误差分别为2.122 2%,1.256 2%和0.682 1%。与灰色GM(1,1)模型和RBF神经网络相比,灰色RBF神经网络组合模型充分发挥了灰色系统的贫乏数据建模和RBF神经网络的高度非线性映射能力的双重优势,具有较高的预测精度,更适合用于城市用水量预测。 In order to overcome the low forecasting precision by a single method, a new combination model based on grey-RBF neural network was developed for forecasting of urban water consumption. The result of comparison tests showed that the average relative errors of grey GM ( 1,1 ) model, RBF neural network model and grey-RBF neural network combination model were 2. 122%, 1. 256% and 0. 682% respectively. Compared with grey GM (1,1) model and RBF neural network model, the grey-RBF combination model could bring into full play the double-edged advantages of grey system constructing forecasting model with poor information and a highly nonlinear mapping uniquely of RBF neural network. It was effective with the advantage of high prediction precision, and suitable for the prediction of urban water consumption.
作者 龙文 徐松金
出处 《供水技术》 2011年第4期34-37,共4页 Water Technology
基金 国家自然科学基金资助项目(61074069)
关键词 灰色预测 RBF神经网络 组合模型 用水量预测 grey prediction RBF neural network combination model prediction of water consumption
  • 相关文献

参考文献6

二级参考文献31

共引文献101

同被引文献15

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部