摘要
研究航天器轨道计算,提高精度,航天器轨道摄动方程中的模型复用性差,精度不高。为解决上述问题,改进了利用四阶龙格-库塔法求解三维二阶常微分方程组的过程,使仿真程序更易于实现和移植。采用改进的算法进行航天器轨道摄动方程的积分运算,求解出实时的航天器三维位置和速度进而算出星下点经纬度,分析了仿真的时间开销。仿真结果表明,长期的航天器运行仿真需要考虑摄动的影响,推导的四阶龙格-库塔法具有较好的可复用性,能方便地用于航天器轨道仿真中,满足仿真的精度和实时性要求。
Considering the bad reuse of model in solving the perturbation equation of spacecraft orbit,the course is deduced in detail and improved,which using four-order Runge-Kutta method to solve three-dimensional two-order invariable differential equations.The improvement makes the realization and transplantation more easier.According to the method,the integral of spacecraft orbital perturbation equation is carried out,and the three-dimensional position,velocity and the sub-satellite point are calculated.Furthermore,the time costs in the simulation are analysed.The result proves that the perturbation should be considered in long-term simulation,and the four-order Runge-Kutta method deduced in this paper can be expediently used in spacecraft orbital simulation,which can satisfy the precision and be real-time in simulating.
出处
《计算机仿真》
CSCD
北大核心
2011年第8期37-40,共4页
Computer Simulation
关键词
复用
龙格-库塔
航天器运行
摄动方程
轨道仿真
Reuse
Runge-Kutta
Spacecraft running
Perturbation equation
Orbital simulation