摘要
针对卫星轨道数值积分、变分方程解算等问题,研究了Gauss-Jackson积分器的原理和计算流程,提出了移位重排方式来优化其存储方式的方法,采用开普勒轨道、庞加莱轨道根数、状态转移矩阵等多种参数评估其性能,并与Runge-Kutta、Adams-Cowell等数值积分器进行了比较。计算结果表明,由于对启动点引入中值改正,Gauss-Jackson数值积分器的计算精度高、速度快,可为卫星轨道数值积分和变分方程求解等问题提供稳定、高效的算法。
A numerical integrator plays an important role in satellite orbit integration and var- iational equation computation. After studying the principles and calculation methods used in the Gauss-Jackson integrator, we introduce a shift rearrangement method to improve its memory system. The performance of the improved algorithm was assessed with several pa- rameters, the Kepler orbit, Poincare elements, and state transition matrix. When compared with the Runge-Kutta and Adams-Cowell integrators, the improved Gauss-Jackson integrator with mid-corrector equations for the start point is more accurate and efficient, which means that it can meet the needs for satellite orbit integration and variational equation computation.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2013年第11期1364-1368,共5页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金资助项目(41131067
41174020
41104014)
地理信息工程国家重点实验室开放基金资助项目(SKLGIE2013-M-1-3)