期刊文献+

基于特征值的阴性选择算法和MHC检测滤窗 被引量:2

Negative Selection Algorithm and MHC Detecting Window Based on Eigenvalue Set
下载PDF
导出
摘要 在分析连续位匹配规则基础上提出了特征值匹配的概念,通过对特征值比较代替传统匹配方式,实现了阴性算法的改进.引入主要组织相容复合体(Major Histocompatibility Complex,MHC)特征判别概念,在分析黑洞特性以及与非检测器集合关系的基础上,设计MHC检测滤窗作为检测器之后的更高级别安全防护层,以彻底杜绝黑洞模式的侵入,真正意义上消除黑洞这一危险检测漏洞.仿真结果表明,使用MHC独立检测滤窗成功地发现了所有检测器未能阻击的黑洞模式,确保了外来模式检测的准确性和安全性,而其检测时间和对系统资源的占用并未因此而显著增加. The concept of eigenvalue matching was put forward based on analyzing the continuous bits matching rule. The negative algorithm was improved by eigenvalue matching rule. The conception of major histocompatibility complex(MHC) was introduced, and the MHC detecting window was designed based on analyzing the characteristic of black holes and the relationship between non-detector set and black holes to terminating the threat of black holes. Simulation results show that the black holes which can't be found using detectors were successfully detected by this new detecting window, which ensured the precision and security of the detecting system. Also, the consumption of the time and occupation of system resource were not increased significantly.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2011年第3期296-302,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(39880032) 广东省自然科学基金资助项目(5004737) 广州市重大科技项目(199-2005-001)
关键词 免疫原理 阴性选择 特征值 黑洞 主要组织相容复合体 immune theory negative selection eigenvalue black holes major histocompatibilitycomplex
  • 相关文献

参考文献16

  • 1郑文岭,马文丽.生物病毒与计算机病毒[J].科技导报,1995,13(2):3-6. 被引量:6
  • 2Forrest S,Perei Son A S, Alien L, et al. Selfnonself discrimination in a comput er[C]. Proceedings of the 1994 IEEE Symposium on Security and Privacy. Los Alamitos, CA, 1994. 被引量:1
  • 3Esponda F, Forrest S, Helman P. A formal framework for positive and negative detection scheme[J].IEEE Transaction on Systems, Man, and Cybernetics, 2003, 34(1): 357-373. 被引量:1
  • 4Singh S. Anomaly detection using negative selection based on the r-contiguous matching rule[C]. Timmis J, Bentley P J. Proc. of the 1st Int'l Conf. on Artificial Immune Systems (ICARIS). Canterbury: University of Kent at Canterbury, 2002:99-106. 被引量:1
  • 5Aickelin U, Greensmith J, Twycross J. Immune system approaches to intrusion detection-a review[C]. Proc. of the 3rd International Conference on Artificial Immune Systems. Catania Italy, 2004: 316-329. 被引量:1
  • 6Gonzalez I, Dasgupta D. Anomaly detection using real-valued negative selection [J]. Genetic Programming and Evaluable Machines, 2003, 4(4): 383-403. 被引量:1
  • 7Gonzalez F, Dasgupta D, Gomez J. The effect of binary matching rules in negative selection[C]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Chicago, IL:Springer-Verlag Press, 2003 : 196-206. 被引量:1
  • 8张海英,管洪娜,潘永湘.一种改进的阴性选择免疫算法[J].西安理工大学学报,2005,21(3):306-309. 被引量:9
  • 9Forrest S. Design principles for the immune system and other distributed autonomous systems[C]. Immunology as Information Processing. USA:Oxford University Press, 2000. 被引量:1
  • 10Jong K D. Using genetic algorithms for concept learning[J].Machine I.earning, 1993, 13(3): 61-188. 被引量:1

二级参考文献25

共引文献58

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部