期刊文献+

高粘度液体真空搅拌脱泡理论分析与计算 被引量:3

Mechanism Analysis and Simulation of Vacuum Agitating Deaeration of High Viscosity Liquids
下载PDF
导出
摘要 真空搅拌脱泡是高粘度液体的一种有效脱泡方式。对于高粘度液体中的气泡,单靠自身的浮力上升,其速度是极其缓慢的,搅拌槽内生成的气泡主要依靠搅拌被带到近液面而逸出。建立了搅拌流场中的气泡运动方程,获得了气泡在流场中的相对运动速度。计算了气泡从液面逸出的总时间。真空搅拌脱泡过程主要发生在液面,论文分析了搅拌槽内真空度大小、主流体循环到液面的次数和主流体在液面停留时间对脱泡的影响。为保证气泡在近液面有足够的停留时间挣脱液面张力,必须要有一个合理搅拌转速。 The mechanisms,responsible for bubble formation and removal from high viscosity liquid by vacuum agitating deaeration,were theoretically analyzed and simulated.The impacts of the liquid surface,pressure of the container,the structure of the double cone spiraling vacuum agitator,on the formation and motion of the bubbles were studied.The simulated results show that the stirring of the agitator generates and brings the bubbles up to the liquid surface of the high viscosity liquid,instead of spontaneous formation and floating to the surface because of buoyancy.The motion equation of the bubbles in the rotating field was formulated;the relative velocity and the total time for a bubble to escape from the surface were evaluated.We found that three major factors:the pressure in the vessel,number of turns and staying time on the surface of the main liquid body,strongly affect the vacuum deaeration.We suggest that the stirring speed be optimized so that the bubble has enough time to free itself from the surface tension.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2011年第4期444-448,共5页 Chinese Journal of Vacuum Science and Technology
基金 江苏省科技成果转化资金项目(BA2008074)
关键词 高粘度液体 真空搅拌 脱泡 气泡运动方程 High viscosity liquids; Vacuum stirring; Deaeration; Bubble motion equation;
  • 相关文献

参考文献12

  • 1牛慧贤.真空技术及设备在动力电池制造中的应用[J].真空科学与技术学报,2006,26(5):392-396. 被引量:5
  • 2王晓冬,王维娜.RH真空精炼吹氩参数对循环流动影响的数值分析[J].真空科学与技术学报,2009,29(6):682-685. 被引量:15
  • 3文怀兴,褚园,章川波.皮革真空鞣制技术的试验研究[J].真空科学与技术学报,2008,28(2):185-187. 被引量:6
  • 4Xu Hanbing, Jian Xiaogang, Meek Thomas T, et al. Degassing of Molten Aluminum A356 Alloy Using Ultrasonic Vibration [ J]. Materials Letters, 2004,58 : 3669 - 3673. 被引量:1
  • 5Tomasz Kiljafaski, Marek Dziubifiski. Centrifugal I)egassing of Highly Viscous Newtonian Liquids[J]. The Canadian Journal of Chemical Engineering, 2001,79:449. 被引量:1
  • 6Vincent F Chevrier. Bubble Separation at the Interface be- tween a Liquid Metal and a Liquid Slag[D]. Department of Materials Science and Engineering Carnegie Mellon Universi- ty Pittsburgh, 2005 : 40 - 46. 被引量:1
  • 7Kendoush A A. The Drag Force on a Collapsing Bubble[J]. J Mechanical Engineering Science, 2008,222(7) : 1225 - 1229. 被引量:1
  • 8Chevrier V, Cramb A V. Observation and Measurement of Bubble Separation at Liquid Steel-Slag Interfaces[J]. Scan-dingavian Journal of Metallurgy, 2005,34:89 - 99. 被引量:1
  • 9Niedzielska A, Ktmcewicz Cz. Heat Transfer and Power Con- sumption for Ribbon Impellers Mixing Efficiency[J]. Chemical Engineering Science, 2005,60: 2439 - 2448. 被引量:1
  • 10Liu Xiaobo, Zhang Jianrun, Li Pu. Design and Calculation of Dual-Cone-Shaped Helical Ribbon Agitator[ C]. Mechanic Automation and Control Engineering (MACE), China: Wuhan, 2010: 5680 - 5683. 被引量:1

二级参考文献26

共引文献23

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部