期刊文献+

基于改进粒子群的模糊聚类超声图像分割 被引量:2

Image Segmentation Based on Improved Particle Swarm Optimization Fuzzy C-means Clustering
下载PDF
导出
摘要 医学超声图像由于存在斑点噪声等模糊和不确定性的特点使得分割一直是一个难题。模糊C-均值聚类算法是一种结合无监督聚类和模糊集合概念的技术,广泛应用于图像分割,但存在着受初始聚类中心和目标函数高度非线性影响,极易收敛到局部极小的缺点。将集群智能的粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验结果表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 Segmenting ultrasound image is a difficult problem because of its intrinsic speckle noises and tissue-related tectures.Fuzzy C-means clustering algorithm(FCM) is an efficient algorithm and is commonly used in image segmentation.However it is sensitive to initialization and is prone to local minimum.This drawback can be alleviated by Particle Swarm Optimization(PSO),which possesses the effective ability of searching global optimal solution.Thus a hybrid method combing the FCM and PSO is proposed.The numerical experiment results show that better results are obtained.
作者 杨丞 费洪晓
出处 《科学技术与工程》 2011年第21期5058-5061,共4页 Science Technology and Engineering
关键词 超声图像分割 粒子群优化 模糊 C-均值聚类 ultrasound image segmentation significant particle swarm optimization fuzzy C-means
  • 相关文献

参考文献8

  • 1严加勇,庄天戈.医学超声图像分割技术的研究及发展趋势[J].北京生物医学工程,2003,22(1):67-71. 被引量:21
  • 2Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York : Plenum Press, 1981:95-107. 被引量:1
  • 3Kennedy J, Eberhart R C. Particle swarm optimization. Networks. USA: Proc IEEE Int Conf Neural, 1995 : 1942-1948. 被引量:1
  • 4Fazli S,Bouzari H,Moradi H,et al. A novel PSO-based parameter estimation for total variation regularization. Proceedings of the ECTICON, Pataya, Thailand, 2009 : 1069-1071. 被引量:1
  • 5Shi Y, Eberhart R C. Parameter selection in particle swarm optimization. In Evolutionary Programming VII, Porto VW, Saravanan N, Waagen D,Eiben AE (eds). Lecture Notes in Computer Science, Springer: Berlin,1998 ;1447:591-600. 被引量:1
  • 6Mendes R, Kennedy J, Neves J. The fully informed particle swarm: Simpler, maybe better. IEEE Trans Evol Comput, 2004; 8 (6): 204-210. 被引量:1
  • 7Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput ,2006 ; 10 ( 3 ) :281-294. 被引量:1
  • 8周龙甫,师奕兵,张伟.拥有领导机制的改进粒子群算法[J].控制与决策,2010,25(10):1463-1468. 被引量:9

二级参考文献33

  • 1李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 2[17]Deng J W, Tsui H T. A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters, 2002,23 (1): 161-169 被引量:1
  • 3[1]Chen C M, Lu H H S, Lin Y C. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Med & Biol, 2000,26 (2): 273-285 被引量:1
  • 4[2]Fan L, Braden G A, Herrington D M. Nonlinear wavelet filter for intra-cononary ultrasound images. Proceedings of the 1996 23rd Annual Meeting on Computers in Cardiology, 1996, P41 -44 被引量:1
  • 5[3]AarninkRG, GiesenRJB, HuynenAL, etal. A practical clinical method for method for contour determination in ultrasonographic prostate images. Ultrasound in Med & Biol, 1994, 20 (8): 705 - 717 被引量:1
  • 6[4]Brathwaite P A, Chandran K B, McPherson D D, et al. Lumen detection in human IVUS images using region-growing. Computers in Cardiology, 1996, (9): 37-40 被引量:1
  • 7[5]Mignotte M, Meunier J, Tardif J C. Endocardial boundary estimation and tracking in echocardiographic images using deformable templates and Markov random fields. Pattern Analysis & Application, 2001, (4):256-271 被引量:1
  • 8[7]Lee B, Yan J Y, Zhuang T G. A dynamic programming based algorithm for optimal edge detection in ultrasound images. Proceedings of SPIE, 2001, 4549: 135- 140 被引量:1
  • 9[8]Kass M, Witkin A, Terzopoulos D. Snakes: active contour models.IJCV, 1988, 1 (1): 31-331 被引量:1
  • 10[9]Yoshida H, Keserci B, Casalino D D, et al. Segmentation of liver tumors in Ultrasound Images based on scale-space analysis of the continuous wavelet transform. IEEE international ultrasonics symposium,Oct. 5-8, Sendai, Japan, 1998 被引量:1

共引文献28

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部