期刊文献+

粒子群优化算法的改进

The Improvement of the Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群优化算法在众多的优化问题上表现出良好的性能,已广泛应用于很多领域,但存在早熟收敛的问题,粒子极易陷入局部最优解.从提高收敛速度等方面对算法改进进行研究,并通过仿真实验证明改进算法的可行性,一定程度上提高了算法的性能. Particle swarm optimization algorithm has good performance in numerous optimization problem,and has been widely used in many fields.But there are problems of premature convergence,and particle easily goes into the local optimal solution.We improve from convergence,prove the feasibility of the algorithm through the simulation experiment,and to a certain extent,improve the performance of the algorithm more better of.
作者 于志奇
出处 《太原师范学院学报(自然科学版)》 2011年第2期74-76,115,共4页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 粒子群算法 收敛速度 收缩因子 群智能 PSO convergence speed shrinkage factors swarm intelligence
  • 相关文献

参考文献11

  • 1Kennedy J', Eberhart R C. A discrete binary version of the particle swarm algorithmiC]. Proceedings of the World Multi Ccon- ference on Systems,Cybernetics and Informatics. Japan:IEEE Service Center,1997:4 104-4 109. 被引量:1
  • 2Kennedy J,Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural net- works. Australia:IEEE Service Center, 1995 : 1 942-1 948. 被引量:1
  • 3Fukuyama Y. Fundamentals o{ particle swarm techniques[C]. Modern Heuristic Optimization Techniques with Applications to power Systems. USA~IEEE Power Engineering Society,2002:45-51. 被引量:1
  • 4Shi Y,Eberhart R C. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation. USA: IEEE, Power Engineering Society, 1998 : 125-128. 被引量:1
  • 5张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:139
  • 6刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用,2007,43(7):68-70. 被引量:49
  • 7Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the IEEE Conference on Evolutionary Computation. USA .. IEEE, Power Engineering Society, 2001 : 101-106. 被引量:1
  • 8Clerc M. The swarm and the queen., towards a deterministic and adaptive particle swarm optimization[C]. Proceedings of In- ternational Conference on Evolutionary Computation. USA : IEEE, Power Engineering Society, 1999 : 1 951-1 957. 被引量:1
  • 9任小波,杨忠秀.粒子群优化算法的改进[J].计算机工程,2010,36(7):205-207. 被引量:12
  • 10代军,李国,徐晨,陶艾.一种新的粒子群优化算法[J].计算机工程,2010,36(9):192-194. 被引量:10

二级参考文献25

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization[C]// Proceedings of IEEE International Conference on Neural Networks. [S. l.]: IEEE Press, 1995: 1942-1948. 被引量:1
  • 4Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Press, 1995: 39-43. 被引量:1
  • 5Eberhan R C, Shi Yuhui. Tracking and Optimizing Dynamic Systems with Particle Swarms[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001:94-100. 被引量:1
  • 6Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Networks. Perth, Australia: IEEE Press, 1995. 被引量:1
  • 7Bergh F D, Engelbrecht A P. A Study of Particle Swarms Optimization Particle Yrajectories[J]. lnforlnation Sciences, 2006, 176(8): 937-971. 被引量:1
  • 8Xie Xiaofeng, Zhang Wenjun, Yang Zhilian. A Dissipative Particle Swarm Optimization[C]//Proc. of CEC'02. Honolulu, USA: [s. n.], 2002. 被引量:1
  • 9Chen Xin, Li Yangmin. A Modified PSO Structure Resulting in High Exploration Ability with Convergence Guaranteed[J]. IEEE Transactions on Systems, Man and Cybernetics, 2007, 37(5): 1271-1289. 被引量:1
  • 10Liang J J, Qin A K, Suganthan P N, et al. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. 被引量:1

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部