期刊文献+

自适应变邻域混沌搜索微粒群算法 被引量:5

Adaptive variable neighborhood chaos search PSO.
下载PDF
导出
摘要 针对局部地形复杂、振荡强烈的函数优化精度难以提高的问题,提出一种自动调整邻域搜索范围和方向的自适应变邻域混沌搜索微粒群算法(AVNC-PSO)。优化初期首先由基本PSO算法进行粗调,当种群收敛于局部最优时,选择飞行停滞且聚集程度高的粒子向不同方向的邻域内进行混沌搜索,搜索方向和粒子偏移量根据粒子与收敛中心的距离和混沌变量的值共同确定。数值仿真表明,该算法能够使局部搜索更精确,有效改善基本PSO算法优化精度不高的弱点。 An adaptive variable neighborhood chaos search PSO that can automatically adjust neighborhood range and direction is proposed for optimization of functions,which is with complex terrain and strong oscillation.Firstly optimize with standard PSO, when the particle swarm converges at local best solution,choose the particles that are stagnant and high extent convergence,and make them chaos search towards various directions in the neighborhood.Both the distance between particle and the convergence center and the chaos variable determine the direction and particle position offset.Simulation results show that this method makes higher precise of local optimization and can improve the algorithm performance effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第31期90-92,共3页 Computer Engineering and Applications
基金 浙江省教育厅2006年度高校科研计划(No.20060347)
关键词 自适应 变邻域 混沌搜索 微粒群算法 self-adaptive variable neighborhood chaos search Particle Swarm Optimization(PSO)
  • 相关文献

参考文献9

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE Int'l Conf on Neural networks,Perth,Australia.Piscataway NJ:IEEE Service Center, 1995:1942-1948. 被引量:1
  • 2Neches R,Fikes R E,Gruber T R,et al.Enabling technology for knowledge sharing[J].AI Magazine, 1991,12(3 ) : 36-56. 被引量:1
  • 3Parsopoulos K E, Vrahatis M N.On the computation of all global minimizers through particle swarm optimization[J].IEEE Transactions on Evolutionary Computation, 2004,8(3 ) : 211-224. 被引量:1
  • 4Van den Bergh,F Engelbrecht A P.Cooperative learning in neural networks using particle swarm optimizers[J].South African Computer Journal, 2000( 26 ) : 84-90. 被引量:1
  • 5Maurice Clerc.Discrete particle swarm optimization illustrated by the traveling salesman problem[EB/OL].[2005-01-12].http://www. mauriceclerc.net. 被引量:1
  • 6Hu X,Eberhart R C,Shi Y H,Engineering optimization with particle swarm[C]//Proceedings of the IEEE Swarm Intelligence Symposium. USA: IEEE,2003:53-57. 被引量:1
  • 7Shi Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation.Piscataway, NJ:IEEE Press, 1998:303-308. 被引量:1
  • 8张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 9郏宣耀,滕少华.一种基于聚类的彩色图像分色算法[J].计算技术与自动化,2006,25(1):110-113. 被引量:3

二级参考文献12

  • 1赵磊,吴涛,许端清.基于分色的色彩检索方法应用研究[J].计算机应用研究,2004,21(6):38-40. 被引量:2
  • 2Eberhart R C,Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, USA: IEEE Service Center, 1995. 39-43. 被引量:1
  • 3Eberhart R C,Shi Y H. Particle swarm optimization: developments, applications and resources [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 81-86. 被引量:1
  • 4Shi Y H,Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 101-106. 被引量:1
  • 5Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway,USA: IEEE Service Center, 1998. 69-73. 被引量:1
  • 6M.Vieira,M.Fernandes,P.Louro.Et al.Optical confinement and colour separation in a double colour laser scanned photodiode (D/CLSP)[J].Sensors and Actuators A 114 (2004)219~223. 被引量:1
  • 7Dae-Won Kim,Kwang H.Lee,Doheon Lee.A novel initialization scheme for the fuzzy c-means algorithm for color clustering[J].Pattern Recognition Letters 25 (2004),227~ 237. 被引量:1
  • 8舒风笛,毋国庆,王敏.图象数据关联规则挖掘[J].小型微型计算机系统,2001,22(11):1353-1356. 被引量:23
  • 9王嘉,朱德森.面向数字印花的彩色图像分色研究[J].基础自动化,2001,8(6):56-58. 被引量:4
  • 10谷波,张永奎.文本聚类算法的分析与比较[J].电脑开发与应用,2003,16(11):4-6. 被引量:11

共引文献139

同被引文献89

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部