期刊文献+

基于空间局部偏离因子的离群点检测算法 被引量:2

Outlier Detection Algorithm Based on Space Local Deviation Factor
下载PDF
导出
摘要 针对空间数据集的特性,提出一种基于空间局部偏离因子(SLDF)的离群点检测算法。利用SLDF度量空间点对象的离群程度,计算空间数据集中点对象的SLDF值并对其进行排序,将取值较大的前M个点对象作为空间离群点。实验结果表明,该算法能较好地检测空间局部离群点,其有效性与准确性均优于SLZ算法,适用于高维大数据集的空间离群点检测。 According to the characteristics of spatial data sets, this paper proposes an outlier detection algorithm based on the Space Local Deviation Factor(SLDF). The algorithm uses SLDF to measure the deviate degree of space points object. It calculates all the points' SLDE sorts by their values, and uses the top M as the space outlier. Experimental result shows that the algorithm can well detect space outlier and be more applicable to the high dimensional and large data sets, its validity and accuracy of the algorithm are superior to that of SLZ algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期282-284,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773013)
关键词 属性权向量 空间离群点 空间对象距离 空间局部偏离因子 attribute weighted vector space outlier space object distance Space Local Deviation Factor(SLDF)
  • 相关文献

参考文献6

二级参考文献19

  • 1薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 2Shekhar S, Lu C T, Zhang P. A Unified Approach to Spatial Outlier Detection[J]. Geolnformatica, An International Journal on Advances of Computer Science for Geographic Information System, 2003, 7(2): 139-166. 被引量:1
  • 3Breunig M, Kriegel H P, Ng R, et al. LOF: Identifying Densitybased Local Outliers[C]//Proc. of ACM SIGMOD International Conference on Management of Data. Dallas, Texas: [s. n.], 2000: 93-104. 被引量:1
  • 4Tang Jian, Chen Zhixiang, Fu A W C, et al. Enhancing Effectiveness of Outlier Detections for Low-density Patterns[C]//Proc. of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining Taipei, China: [s. n.], 2002: 535-548. 被引量:1
  • 5Sanjay C, Sun Pei. SLOM: A New Measure for Local Spatial Outliers[J]. Knowledge and Information Systems, 2006, 9(4): 412-429. 被引量:1
  • 6Han Jia-Wei,Kamber Micheline Data Mining:Concepts and Techniques (2nd Edition).San Francisco:Morgan Kaufmann Publishers,2006 被引量:1
  • 7Hawkins D.Identification of Outliers.London:Chapman and Hall,1980 被引量:1
  • 8Knorr E,Ng R.Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference.New York,1998:392-403 被引量:1
  • 9Breunig M M,Kriegel H P,Ng R T et al.OPTICS-OF:Identifying local outliers//Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases.Prague,1999:262-270 被引量:1
  • 10Breunig M,Knegel H P,Ng R et al.LOF:Identifying density-based local outliers//Proceedings of ACM SIGMOD Conference.Dallas,Texas,2000:93-104 被引量:1

共引文献99

同被引文献18

  • 1Bokyoung Kang, Dongsoo Kim, Suk-Ho Kang. Real-time business process monitoring method for predictionof abnormal termination using KNNI-based LOF pre-diction[J]. Expert Systems with Applications, 2012,39(5).6061-6068. 被引量:1
  • 2Breunig M M,Kriegel H P,Ng R 丁,et al. LOF: I-dentifying density based local outliers [C] // Proc ofACM SIGMOD Conf. New York: ACM,2000:427-438. 被引量:1
  • 3Yuxin Ma,Hongbo Shi, Hehe Ma, et al. Dynamicprocess monitoring using adaptive local outlier factor[J ]. Chemometrics and Intelligent Laboratory Sys-tems, 2013,127(15):89-101. 被引量:1
  • 4Przemysaw Grzegorzewski.On possible and necessary inclusion of intuitionistic fuzzy sets[J].Information Sciences,2011,181(2):342-350. 被引量:1
  • 5Daniela Stojanova,Michelangelo Ceci,Annalisa Appice,et al.Dealing with spatial autocorrelation when learning predictive clustering trees[J].Ecological Informatics,2013,13(1):22-39. 被引量:1
  • 6Xi Qu,Lungfei Lee.LM tests for spatial correlation in spatial models with limited dependent variables[J].Regional Science and Urban Economics,2012,42(3):430-445. 被引量:1
  • 7Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying Densitybased Local Outliers[C]//Proc.of ACM SIGMOD Conference.New York,USA:ACM Press,2000:427-438. 被引量:1
  • 8韩京宇,徐立臻,董逸生.数据质量研究综述[J].计算机科学,2008,35(2):1-5. 被引量:102
  • 9薛安荣,姚林,鞠时光,陈伟鹤,马汉达.离群点挖掘方法综述[J].计算机科学,2008,35(11):13-18. 被引量:69
  • 10王伟一,郝文宁,赵水宁,蒋维.基于相对密度的军事高维数据噪声点检测方法[J].计算机工程,2009,35(5):50-52. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部