期刊文献+

基于拉普拉斯谱的医学图像配准算法 被引量:5

Medical Image Registration Algorithm Based on Laplacian Spectrum
下载PDF
导出
摘要 提出一种基于拉普拉斯谱的医学图像配准算法,通过将谱图理论应用到医学图像配准中并引入特征向量,以达到提高配准精确度和计算效率的目的。该算法根据医学图像的解剖特征来构造拉普拉斯矩阵,通过分析拉普拉斯矩阵的谱得到匹配关系;采用射影变换模型,计算射影矩阵;通过坐标变换和图像插值方法实现图像配准。实验结果表明,该算法与经典的最大互信息配准算法相比,提高了单传感器和多传感器医学图像配准的精度,并且降低运算复杂度。 The medical image registration algorithm based on Laplacian spectrum algorithm is proposed. The idea of using graph theory as medical image point registration is proposed. By eigenvector, the higher registration precision and the strong ability have been achieved. The Laplacian spectrum of the anatomy feature point sets of the two images is constructed to match. The strategy uses the homogeneous matrix, coordinate transfer and the image interpolation to register. Experimental results show that it has more efficiency and higher registration precision than maximization of mutual information whenever in the single sensor or multi-sensor.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期231-232,235,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60772121) 安徽省教育厅重点科研计划基金资助项目(KJ2010A021) 安徽大学"211工程"学术创新团队基金资助项目
关键词 配准 拉普拉斯谱 互信息 传感器 registration Laplacian spectrum graph mutual information sensor
  • 相关文献

参考文献6

  • 1Ramirez L, Durdle N G, Raso V J. Medical Image Registration in Computational Intelligence Framework: A Review[J]. Electricaland Computer Engineering, 2003, 5(2): 1021 - 1024. 被引量:1
  • 2Holden M, Denton D L G. Voxel Similarity Measures for 3-D Serial MR Brain Image Registration[J]. IEEE Transaction on Medical Imaging, 2000, 19(2): 94-102. 被引量:1
  • 3Martin S, Durran I T S. A New Divergence Measure for Medical Image Registration[J]. IEEE Transactions on Image Processing, 2007, 16 (4): 957- 966. 被引量:1
  • 4Li Hua, Wang Cui, Wang Anna. Medical Image Registration Based on More Features and Artificial Immune Algorithm[C]// Proc. of International Joint Conference on Artificial Intelligence.Haikou, China: [s. n.], 2009: 469-472. 被引量:1
  • 5鲍文霞,梁栋.结合颜色矢量的谱匹配算法[J].计算机工程,2009,35(15):13-15. 被引量:1
  • 6韦穗,杨尚骏,章权兵,等.计算机视觉中的多视图几何[M].合肥:安徽大学出版社,2002. 被引量:8

二级参考文献6

  • 1王守觉,孙华.一种基于矢量关系运算的人脸检测算法[J].微计算机信息,2006,22(10S):294-296. 被引量:5
  • 2Scott G L,Longuet-Higgins H C.An Algorithm for Associating the Features of Two Images[J].Proceedings of Royal Society of London:Biological B,1991,244(1309):21-26. 被引量:1
  • 3Shapiro L S,Brady J M.Feature-based Correspondence:An Eigenvector Approach[J].Image and Vision Computing,1992,10(5):283-288. 被引量:1
  • 4Marco C,Edwin H R.Spectral Correspondence for Point PatternMatching[J].Pattern Recognition,2003,36(1):193-204. 被引量:1
  • 5Hsu R L,Abdel-Mottaleb M,Jain A K.Face Detection in Color Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):696-706. 被引量:1
  • 6Sinkhorn R.A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices[J].Ann.Math.Stat.,1964,35(2):876-879. 被引量:1

共引文献7

同被引文献75

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部