期刊文献+

路由级Internet宏拓扑结构的谱密度分析

Spectrum Density Analysis on Router-level Internet Macroscopic Topology
下载PDF
导出
摘要 针对路由级Internet宏拓扑结构进行了谱密度分布分析与无符号拉普拉斯谱(SLS)分布分析。首先通过对拓扑结构各异的5种采样拓扑图,分别进行谱密度-特征值分布分析,发现5组分析结果表现出高度的一致性,证明了Internet拓扑结构的自相似性,也证明了采样拓扑可以再现局部Internet拓扑结构特征。然后通过采样拓扑图的谱密度-特征值分布函数与ER图、BA无尺度网络拓扑图进行比较,发现三者具有明显区别,得出谱密度-特征值分布函数可作为分辨图谱拓扑结构有效方法的结论。最后通过4组3000点采样拓扑进行SLS分布分析,发现尽管4组3000点采样路由与连接互不相同,但SLS谱分布却非常相似,4组采样拓扑在特征值λ=1处重数均较高,重数次高的特征值都群聚在λ=2处。在特征值从2~103变化过程中表现出较明显的幂律分布特性,其幂指数值保持在3.2813至3.8013之间,特征指数接近。该结论为Internet宏观拓扑结构建模研究提供了量化判据,是Internet拓扑建模研究的重要内容。 Analysis of spectrum density and SLS(signless Laplacian spectra) on router-level macroscopic toplogy was performed. Firstly, we found in experiments that five analysis results of spectrum density on five sampling topologies showed highly similarity proving that Internet is a system of self-similarity as well as the ability for sampling topology to resemble the whole Internet topology. Secondly, obvious difference between the spectrum density analysis results of sampling topology, ER graph and BA graph indicated that spectrum density analysis is a good way to distinguish graphs. Finally,analysis of SLS on four groups of sampling topology with 3000 nodes showed that SLS distribution re- sults were very much similar with each other though the topology samples were quite different. All four analysis results had high tuples at λ=1 and second high tuples at λ=2. Besides, principle of the power law distribution was observed from SLS analysis when eigenvalue in SLS ranged from 2 to 103, proving in another aspect that Internet topology had property of self-similarity. The research results above could be regarded as quantitative judgements during the research of modeling on Internet macroscopic topology.
出处 《计算机科学》 CSCD 北大核心 2008年第12期34-38,共5页 Computer Science
基金 国家高技术研究发展计划(2001AA415320)
关键词 Internet拓扑建模 谱密度 谱密度-特征值分布 路由级Internet拓扑 无符号拉普拉斯谱分布 Internet topology modeling,Spectrum density,Spectrum-eigenvalue distribution,Router-level Internet topology, SLS
  • 相关文献

参考文献15

  • 1姜誉,方滨兴,胡铭曾,何仁清.大型ISP网络拓扑多点测量及其特征分析实例[J].软件学报,2005,16(5):846-856. 被引量:38
  • 2West D B.图论导引[M].机械工业出版社,2006:1-47,339-348 被引量:1
  • 3Farkas I J, Derenyi I, Barabdsi A, et al. Spectra of ' real-world' graphs: Beyond the semicircle law[J]. Physical Review E, 2001, 64(2):1-12 被引量:1
  • 4张宇,张宏莉,方滨兴.Internet拓扑建模综述[J].软件学报,2004,15(8):1220-1226. 被引量:64
  • 5汪小帆,李翔,陈关荣编著..复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.
  • 6Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J]. ACM SIGCOMM Computer-Communication Review, 1999,29(4) : 251-262 被引量:1
  • 7Mehta ML. Random Matrices. 2nd ed[M]. New York: Academic Press, 1991 被引量:1
  • 8Goh KI, Kahang B, Kim D. Spectra and eigenvectors of scale-free networks[J]. Physical Review E, 2001,64 (5) : 1-5 被引量:1
  • 9Barabasi A L, Eric Bonabeau. Scale free networks[J]. Scientific American, 2003 : 50-59 被引量:1
  • 10Barabasi AL, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286(5439) : 509-512 被引量:1

二级参考文献56

  • 1姜誉,方滨兴,胡铭曾.多点测量Internet路由器级拓扑[J].电信科学,2004,20(9):12-17. 被引量:3
  • 2Floyd S, Kohler E. Internet research needs better models. ACM SIGCOMM Computer Communication Review, 2003,33(1)29-34. 被引量:1
  • 3Jiang Y, Fang BX, Hu MZ, Zhang HL, Yun XC. A distributed architecture for Internet router level topology discovering systems.In: Fan PZ, Shen H, eds. Proc. of the 4th Int'l Conf. on Parallel and Distributed Computing, Applications and Technologies(PDCAT'2003). New York: IEEE Press, 2003.47-51. 被引量:1
  • 4Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. ACM SIGCOMM Computer Communication Review, 1999,29(4):251-262. 被引量:1
  • 5Mitzenmacher M. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 2003,1(2):226-251. 被引量:1
  • 6Chen Q, Chang H, Govindan R, Jamin S, Shenker S J, Willinger W. The origin of power laws in Internet topologies revisited. In:Proc. of the IEEE INFOCOM 2002. New York: IEEE Press, 2002. 608-617. 被引量:1
  • 7Farkas IJ, Derenyi I, Barabasi A, Vicsek T. Spectra of 'real-world' graphs: Beyond the semicircle law. Physical Review E, 2001,64(2):1-12. 被引量:1
  • 8Albert R, Barabasi A. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002,74(1):47-97. 被引量:1
  • 9Dam E, Haemers WH. Which graphs are determined by their spectrum? Linear Algebra and its Applications, 2003,373:241-272. 被引量:1
  • 10Magoni D, Pansiot J-J. Analysis of the autonomous system network topology. ACM Computer Communication Review, 2001,31(3):26-37. 被引量:1

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部