期刊文献+

热定型过程能耗建模及PSO参数优化 被引量:8

Modeling and PSO based parameter optimization of heat-setting process
下载PDF
导出
摘要 热定型过程是印染工业中的主要耗能单元之一。首先,基于定型机的物理结构及工艺原理,依据换热平衡和牛顿热交换公式,推导出能耗与定型过程关键因素间的相互关联模型,即能耗模型。其次,在Matlab/Sim-ulink软件中,对上述模型进行构建。最后,将能耗模型转化为能耗最小的优化问题,运用粒子群优化算法对其进行求解。现场工业数据的仿真研究表明:能耗模型符合现场工艺,粒子群优化结果已得到现场工程师的初步认可。 Heat-setting process is one of the major energy-consuming unit in dyeing industry.Firstly,based on stereotypes of the physical structure and process principles,model of energy consumption and the key factors of the process is derived using Newton's heat balance and heat exchange formula.Then,in the Matlab/Simulink software,the following model is constructed.Finally,after the conversion of the energy model into the optimization problem of minimum energy consumption,particle swarm optimization algorithm is introduced to solve them.Simulation of industrial data shows that the proposed energy consumption model is consistent with on-site process and particle swarm optimization results can provide a reference and guidance for the operation.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第8期2206-2211,共6页 CIESC Journal
基金 国家高技术研究发展计划项目(2009AA04Z139) 国家自然科学基金项目(61004034) 浙江省自然科学基金项目(Y1110686)~~
关键词 热定型过程 能耗模型 粒子群优化 参数优化 heat-setting process energy consumption model PSO algorithm parameter optimization
  • 相关文献

参考文献10

  • 1WuZhoulin(吴周林),JinJizhong(金继忠).Transformation of heat setting machine drying [J]. Wool Textile Journal (毛纺科技),1997,32(6):191-196. 被引量:1
  • 2LuoShengwen(罗胜文).Improvement of K-IO type stenter machine [J]. Advanced Textile Technology (现代纺织技术),2003,2(11):51-53. 被引量:1
  • 3Mori S, Kondo S, Kinose R. Roll shaping machine realizing high efficiency and stable grinding [J]. Hitachi Review, 1996, 45 (6): 289-292. 被引量:1
  • 4Kinose R, Kondoh S, Mori S. Development and application of built-in roll shaping machine for hot strip mill work rolls [J]. Ironand Steel Engineer, 1997, 74 (1) : 32-36. 被引量:1
  • 5Zhou Daqing(周大庆).Application of industrial control computer in heat setting machine of textile industry [J].Textile Machinery (纺织机械),2000,14:25-29. 被引量:1
  • 6Kennedy J, Eberhart R. Particle swarm optimization// Proceedings of the 4th IEEE International Conference on Neural Networks [C]. Piscataway: IEEE Service Center, 1995:1942-1948. 被引量:1
  • 7Poli R. Analysis of the publications on the applications of particle swarm optimization [J]. Journal of Artificial Evolution and Applications, 2008:1-10. 被引量:1
  • 8Gao Shang, Zhang Zaiyue, Cao Cungen. Multiplicate particle swarm optimization algorithm [J]. Journal of Computers, 2010, $ (1): 150-157. 被引量:1
  • 9Yang Tianqi. A multi-objective PSO algorithm for energy- efficient scheduling [J]. Advanced Materials Research, 2011, 143/144:663-667. 被引量:1
  • 10Perez R E, Behdinan K. Particle swarm approach for structural design optimization [J]. Computers and Structures, 2007, 85:1579-1588. 被引量:1

同被引文献96

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部