期刊文献+

一种基于离散马尔可夫过程的诊断风险模型 被引量:1

A Model of Diagnosis Risk Based on Discrete-time Markovian Process
下载PDF
导出
摘要 文章建立了一个基于贝叶斯公式和马尔可夫链的诊断模型,并根据中国现有的医疗管理体制进行假设检验,对假设结果进行评价。在分类过程中应用贝叶斯决策,将医疗诊断简单情况下的二值分类进行研究,同时依据分类平均风险最小的原则给出了分类的决策函数,并应用贝叶斯理论和马尔可夫过程进行讨论。实验证实了在我国建立强制医疗责任保险制度的正确性与必要性。 This paper established a model for the diagnosis based on Bayesian formula and Markov chain,making hypothesis testing for the model according to China current medical management system,and the results of hypothesis testing were evaluated.Bayesian decision was applied in classification process,studying the two-value classification of medical diagnosis in simple case.While the classification decision function is given according to the principle of minimum average risk classification.And discussion was given by applying the Bayesian theory and Markov processes.The experiments confirmed that the establishment of compulsory medical liability insurance system was correct and necessary in our country.
出处 《四川理工学院学报(自然科学版)》 CAS 2011年第3期358-360,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅重点项目(2010RY001)
关键词 贝叶斯估计 马尔可夫过程 决策函数 二值分类 平均风险 医疗责任保险制度 Bayesian estimation Markov process decision function two-value classification average risk medical liability insurance system
  • 相关文献

参考文献8

二级参考文献21

共引文献292

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部