期刊文献+

Kuramoto-Sivashinsky方程解的定性分析 被引量:1

Qualitative Analysis for the Solution of Kuramoto_Sivashinsky Equation
下载PDF
导出
摘要 研究Kuramoto_Sivashinsky 方程的两种初边值问题,运用Galerkin 方法给出一系列先验估计结果,得到广义解和古典解的存在唯一性。 In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions.
出处 《应用数学和力学》 EI CSCD 北大核心 1999年第11期1161-1167,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金 中国博士后科学基金
关键词 初边值问题 广义解 古典解 K-S方程 定性分析 Kuramoto_Sivashinsky equation initial boundary value problems generalized global solution classical global solution, asymptotic behavior
  • 相关文献

参考文献14

二级参考文献1

共引文献77

同被引文献6

  • 1Kuramoto Y. Diffusion induced chaos in reactions systems[J]. Progr Theoret Phys Suppl, 1978, 64: 346-367. 被引量:1
  • 2Sivashinsky G I. On flame propagation under conditions of stoiehiometry[J]. SIAM J Appl Math, 1980, 39: 67-82. 被引量:1
  • 3Hooper A P, Grimshaw R. Nonlinear instability at the interface between two fluids[J]. Phys Fluids, 1985, 28:37-45. 被引量:1
  • 4Coward A V, Papageorgiou D T, Smygrlis Y S. Nonlinear stability of Oscillatory core annular flow: A generlized Kuramoto-Sivashinsky equation with time periodic coeficients[J]. Zeit Angew Math Phys (ZPMA), 1995, 46:1-39. 被引量:1
  • 5Tadmor E. The well posedness of the Kuramoto-Sivashinsky equation[J]. SIAM J Math Anal, 1986, 17: 884-893. 被引量:1
  • 6Foias C, Jolly M S, Keverkidis I G, Titi E S. On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation[J]. Phys lett A, 1994, 186: 87-96. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部