摘要
利用振动性、渐近性理论和微分不等式,建立了一类偏差变元依赖状态的二阶强迫非线性泛函微分方程的振动准则,并举出例子来验证所得结果,讨论了有界振动解的渐近性。所得到的结果对相应的齐次方程仍然适用。
By using the theory of oscillation,asymptotic behavior and differential inequality,this paper gave some oscillatory criteria for a kind of second order non-linear functional differential equations with deviating arguments depending on the state.An example was given to verify the results.Aasymptotic behavior of the boundary oscillatory solution was discussed.The obtained results are applicable to the corresponding homogeneous equations.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2011年第4期74-78,112,共5页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(10771001)
教育部博士学科点专项科研基金项目(20093401110001)
安徽省高校自然科学研究重大项目(KJ2010ZD02)
关键词
二阶非线性泛函微分方程
振动性
渐近性
强迫项
偏差变元
Second order non-linear functional differential equation
Oscillation
Asymptotic behavior
Forcing term
Deviating argument