期刊文献+

支撑向量机多类分类方法的研究 被引量:3

Research on Multi-class Classification of Support Vector Machine
下载PDF
导出
摘要 支撑向量机是一种基于统计学理论的新的学习算法,它采用了结构风险最小化原则,能有效地解决过学习问题,具有很强的泛化能力。传统支撑向量机针对两类分类问题,为了深入地分析实际应用中的大规模和多类别的问题,通过对一次性求解法、一对多、一对一、有向无环图方法的原理和实现方法进行分析,从速度和精度两方面对这些方法的优缺点进行了归纳和总结,并通过实验进行了验证和比较。实验结果表明,各种方法可以获得不同的分类器推广能力及训练速度和测试速度,也为今后如何更好地解决支撑向量机多类分类问题指明了方向。 Support vector machine(SVM) is a new learning method based on statistical learning theory, which can effectively solve the over study problem by using structural risk minimization (SRM) and has better generalization performance. Traditional SVM is developed for binary classification problems, in order to analyze huge and multi-category data for practical problems, a comparison result about the classification speed and accuracy is given through analyzing the theory and realization method of all-together, one-against-rest, one-against-one and directed acyclic graph sup- port vector machine(DAGSVM). Experimental results show that various methods can get different classifier generalization ability, training speed and test speed. The direction of how to solve multi-class classification effectively is proposed.
出处 《现代电子技术》 2011年第13期165-167,171,共4页 Modern Electronics Technique
关键词 统计学理论 支撑向量机 结构风险最小化 多类分类 statistical learning theory support vector machine (SVM) structural risk minimization (SRM) multiclass classification
  • 相关文献

参考文献12

二级参考文献38

  • 1朱远平,戴汝为.基于SVM决策树的文本分类器[J].模式识别与人工智能,2005,18(4):412-416. 被引量:25
  • 2孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 3Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:174
  • 4Weston J, Watkins C. Support vector machines for multi class pattern recognition[C]//Proceedings ofthe 7^th European Symposium on Artificial Neural Networks. Bruges, Belgium: [s. n.], 1999: 219-224. 被引量:1
  • 5Friedman J H. Another apporoach to polychotomous classification [R]. Stanford University, Department of Statistics, 1996. 被引量:1
  • 6Krebel U. Pairwise classification and support vector machines [M]. Cambridge, USA: The MIT Press, 1999:255-268. 被引量:1
  • 7Weston J, Watkins C. Multi-class support vector machines[R]. CSD-TR 98-04, Royal Holloway, University of London, 1998. 被引量:1
  • 8Rifkin R, Clautau A. In defense of one vs all classification [J]. Journal of Machine Learning Research ,2004, (5) : 101-141. 被引量:1
  • 9Debnath R, Takahide N, Takahashi H. A decision based on one against one method for multi-class support vector machine[J]. Pattern Anal Applic,2004,7: 164-175. 被引量:1
  • 10Moreira M, Mayoraz E. Improving pairwise coupling classification with error correcting classifiers[C]//Proeeeding of Tenth European Conference on Machine Learning. Germany:Springer Berlin/Heidelberg, 1998,1398 : 160-171. 被引量:1

共引文献2372

同被引文献24

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部