期刊文献+

用于约束优化的简洁多目标微粒群优化算法 被引量:21

Barebones Multi-Objective Particle Swarm Optimizer for Constrained Optimization Problems
下载PDF
导出
摘要 本文提出了一种少控制参数的约束多目标微粒群优化算法.该算法利用关于微粒全局和个体最优点的高斯分布来更新微粒的位置,无需设置惯性权重和学习因子等控制参数;利用非可行储备集保存所得非可行解,给出一种改进的储备集更新方法;为均衡微粒对未知可行域和已知可行域的开发/探索能力,提出一种线性递减策略,用来分配微粒从非可行储备集中选择全局最优点的概率.最后,实验验证了所提算法的有效性. This paper presents a constrained multi-objective particle swarm optimization algorithm with few control parameters to solve constrained multi-objective optimization problems.In this algorithm,a Gaussian distribution based on the global/local best positions is developed to update the particles' positions.It makes unnecessary to perform fine tuning on such control parameters as inertia weight and acceleration coefficients.Using an infeasible archive to save infeasible solutions,an improved update method of the infeasible archive is proposed.In order to balance the algorithm's capabilities to exploit known feasible regions and to explore unknown feasible regions,a linear decreasing strategy is introduced to assign the probability,based on which the particles select their global best positions from the infeasible archive.Finally,feasibility of the proposed algorithm is validated by simulation results.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第6期1436-1440,共5页 Acta Electronica Sinica
基金 国家自然科学基金资助(No.61005089) 江苏省自然科学基金资助(No.BK2008125) 高等学校博士学科点专项科研基金资助课题(No.20100095120016)
关键词 多目标优化 约束 微粒群 高斯分布 multi-objective optimization constraint particle swarm optimization Gaussian distribution
  • 相关文献

参考文献10

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Pro- ceedings of IEEE International Conference on Neural Networks [C]. NJ: 1EEE Piscataway, 1995. 1942 - 1948. 被引量:1
  • 2Coello Coello C A,Pulido G T, Lechuga M S. Handling mul- tiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 256 - 279. 被引量:1
  • 3Tsai S J, Sun T Y, et al. An improved multi-objective particle swarm optimizer for multi-objective problems[J]. Expert Sys- tems with Applications, 2010,37 (8) : 5872 - 5886. 被引量:1
  • 4彭志平,陈珂.一种消解协商僵局的多目标粒子群优化算法[J].电子学报,2007,35(8):1452-1457. 被引量:7
  • 5陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群优化算法[J].控制与决策,2009,24(12):1851-1855. 被引量:54
  • 6Wang Y J, Yang Y P.Particle swarm optimization with prefer- ence order ranking for multi-objective optimization[J]. Infor- rnation Sciences, 2009,179 (12) : 1944 - 1959. 被引量:1
  • 7Sift Y H, Eberbart R C. A modified particle swarm optimizer [A]. Proceedings of the IF, RE International Conference on Evo- lutionary Computation[ C]. NJ: 1F, F,F, Piscataway, 1998.63 - 79. 被引量:1
  • 8Leong W F. Multiobjective Paricle Swarm Optimization: Inte- gration of Dynamic Population and Multiple-swarm Concepts and Constraint Handing [ D ]. Stillwater: Oklahoma State Uni- versity, 2008. 被引量:1
  • 9Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-[J]. 1EEE Transac- tions on Evolutionary Computatiorks, 2002,6 (2) : 182 - 197. 被引量:1
  • 10Coello Coello C A, Van Veldhuizen D A, "Larnont G B. Evo- lutionary Algorithrns for Solving Multi-objective Problems [M]. Norwell, MA: Kluwer, 2002. 被引量:1

二级参考文献33

  • 1Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Computational Intelligence Research, 2006, 2 (3) : 287-308. 被引量:1
  • 2Parsopoulos K E, Vrahatis M N. Particle swarm optimization in multiobjective problems[C]. Proc of the ACM 2002 Symposium on Applied Computing. Madrid, 2002: 603-607. 被引量:1
  • 3Parsopoulos K E, Tasoulis D K, Vrahatis M N. Multiobjective optimization using parallel vector evaluated particle swarm optimization [C]. Proc of the IASTED Int Conf on Artificial Intelligence and Applications, Innsbruck, 2004: 823-828. 被引量:1
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6 (2): 182-197. 被引量:1
  • 5Li X D. A non-dominated sorting particle swarm optimizer for multiobjeetive optimization [J]. Lecture Notes in Computer Science, 2003, 2723: 37-48. 被引量:1
  • 6Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multi-objective optimization[J]. Evolutionary Computation, 2002, 10 (3) : 263-282. 被引量:1
  • 7Mostaghim S, Teich J. The role of ε-dominance in multi- objective particle swarm optimization methods[C]. Proc of IEEE Swarm Intelligence Symposium. Canberra, 2003: 1764-1771. 被引量:1
  • 8Sierra M R, Coello C A C. Improving PSO-based multi- objective optimization using crowding mutation and dominance[C]. Int Conf on Evolutionary Multi-criterion Optimization. Guanajuato, 2005: 505-519. 被引量:1
  • 9Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation, 2004, 8 (3): 256-279. 被引量:1
  • 10Coello C A C, Lechuga M. MOPSO: A proposal for multiple objective particle swarm optimization[C]. Proc of IEEE Congress on Evolutionary Computation. Hawaii, 2002: 1051-1056. 被引量:1

共引文献58

同被引文献183

引证文献21

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部